Line data Source code
1 : /*
2 : * Core bignum functions
3 : *
4 : * Copyright The Mbed TLS Contributors
5 : * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 : */
7 :
8 : #include "common.h"
9 :
10 : #if defined(MBEDTLS_BIGNUM_C)
11 :
12 : #include <string.h>
13 :
14 : #include "mbedtls/error.h"
15 : #include "mbedtls/platform_util.h"
16 : #include "constant_time_internal.h"
17 :
18 : #include "mbedtls/platform.h"
19 :
20 : #include "bignum_core.h"
21 : #include "bignum_core_invasive.h"
22 : #include "bn_mul.h"
23 : #include "constant_time_internal.h"
24 :
25 8741448 : size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
26 : {
27 : #if defined(__has_builtin)
28 : #if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
29 : #define core_clz __builtin_clz
30 : #elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
31 : #define core_clz __builtin_clzl
32 : #elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
33 : #define core_clz __builtin_clzll
34 : #endif
35 : #endif
36 : #if defined(core_clz)
37 8741448 : return (size_t) core_clz(a);
38 : #else
39 : size_t j;
40 : mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
41 :
42 : for (j = 0; j < biL; j++) {
43 : if (a & mask) {
44 : break;
45 : }
46 :
47 : mask >>= 1;
48 : }
49 :
50 : return j;
51 : #endif
52 : }
53 :
54 8741450 : size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
55 : {
56 : int i;
57 : size_t j;
58 :
59 27612380 : for (i = ((int) A_limbs) - 1; i >= 0; i--) {
60 27612378 : if (A[i] != 0) {
61 8741448 : j = biL - mbedtls_mpi_core_clz(A[i]);
62 8741448 : return (i * biL) + j;
63 : }
64 : }
65 :
66 2 : return 0;
67 : }
68 :
69 225510 : static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
70 : {
71 : if (MBEDTLS_IS_BIG_ENDIAN) {
72 : /* Nothing to do on bigendian systems. */
73 : return a;
74 : } else {
75 : #if defined(MBEDTLS_HAVE_INT32)
76 : return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
77 : #elif defined(MBEDTLS_HAVE_INT64)
78 225510 : return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
79 : #endif
80 : }
81 : }
82 :
83 34770 : void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
84 : size_t A_limbs)
85 : {
86 : mbedtls_mpi_uint *cur_limb_left;
87 : mbedtls_mpi_uint *cur_limb_right;
88 34770 : if (A_limbs == 0) {
89 0 : return;
90 : }
91 :
92 : /*
93 : * Traverse limbs and
94 : * - adapt byte-order in each limb
95 : * - swap the limbs themselves.
96 : * For that, simultaneously traverse the limbs from left to right
97 : * and from right to left, as long as the left index is not bigger
98 : * than the right index (it's not a problem if limbs is odd and the
99 : * indices coincide in the last iteration).
100 : */
101 34770 : for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
102 147525 : cur_limb_left <= cur_limb_right;
103 112755 : cur_limb_left++, cur_limb_right--) {
104 : mbedtls_mpi_uint tmp;
105 : /* Note that if cur_limb_left == cur_limb_right,
106 : * this code effectively swaps the bytes only once. */
107 112755 : tmp = mpi_bigendian_to_host(*cur_limb_left);
108 112755 : *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
109 112755 : *cur_limb_right = tmp;
110 : }
111 : }
112 :
113 : /* Whether min <= A, in constant time.
114 : * A_limbs must be at least 1. */
115 768 : mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
116 : const mbedtls_mpi_uint *A,
117 : size_t A_limbs)
118 : {
119 : /* min <= least significant limb? */
120 768 : mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
121 :
122 : /* limbs other than the least significant one are all zero? */
123 768 : mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
124 4780 : for (size_t i = 1; i < A_limbs; i++) {
125 4012 : msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
126 : }
127 :
128 : /* min <= A iff the lowest limb of A is >= min or the other limbs
129 : * are not all zero. */
130 768 : return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
131 : }
132 :
133 5137792 : mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
134 : const mbedtls_mpi_uint *B,
135 : size_t limbs)
136 : {
137 5137792 : mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
138 :
139 30625836 : for (size_t i = limbs; i > 0; i--) {
140 : /*
141 : * If B[i - 1] < A[i - 1] then A < B is false and the result must
142 : * remain 0.
143 : *
144 : * Again even if we can make a decision, we just mark the result and
145 : * the fact that we are done and continue looping.
146 : */
147 25488044 : cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
148 25488044 : done = mbedtls_ct_bool_or(done, cond);
149 :
150 : /*
151 : * If A[i - 1] < B[i - 1] then A < B is true.
152 : *
153 : * Again even if we can make a decision, we just mark the result and
154 : * the fact that we are done and continue looping.
155 : */
156 25488044 : cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
157 25488044 : ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
158 25488044 : done = mbedtls_ct_bool_or(done, cond);
159 : }
160 :
161 : /*
162 : * If all the limbs were equal, then the numbers are equal, A < B is false
163 : * and leaving the result 0 is correct.
164 : */
165 :
166 5137792 : return ret;
167 : }
168 :
169 36010701 : void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
170 : const mbedtls_mpi_uint *A,
171 : size_t limbs,
172 : mbedtls_ct_condition_t assign)
173 : {
174 36010701 : if (X == A) {
175 0 : return;
176 : }
177 :
178 : /* This function is very performance-sensitive for RSA. For this reason
179 : * we have the loop below, instead of calling mbedtls_ct_memcpy_if
180 : * (this is more optimal since here we don't have to handle the case where
181 : * we copy awkwardly sized data).
182 : */
183 213155329 : for (size_t i = 0; i < limbs; i++) {
184 177144628 : X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
185 : }
186 : }
187 :
188 10261632 : void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
189 : mbedtls_mpi_uint *Y,
190 : size_t limbs,
191 : mbedtls_ct_condition_t swap)
192 : {
193 10261632 : if (X == Y) {
194 0 : return;
195 : }
196 :
197 60830848 : for (size_t i = 0; i < limbs; i++) {
198 50569216 : mbedtls_mpi_uint tmp = X[i];
199 50569216 : X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
200 50569216 : Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
201 : }
202 : }
203 :
204 0 : int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
205 : size_t X_limbs,
206 : const unsigned char *input,
207 : size_t input_length)
208 : {
209 0 : const size_t limbs = CHARS_TO_LIMBS(input_length);
210 :
211 0 : if (X_limbs < limbs) {
212 0 : return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
213 : }
214 :
215 0 : if (X != NULL) {
216 0 : memset(X, 0, X_limbs * ciL);
217 :
218 0 : for (size_t i = 0; i < input_length; i++) {
219 0 : size_t offset = ((i % ciL) << 3);
220 0 : X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
221 : }
222 : }
223 :
224 0 : return 0;
225 : }
226 :
227 33926 : int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
228 : size_t X_limbs,
229 : const unsigned char *input,
230 : size_t input_length)
231 : {
232 33926 : const size_t limbs = CHARS_TO_LIMBS(input_length);
233 :
234 33926 : if (X_limbs < limbs) {
235 0 : return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
236 : }
237 :
238 : /* If X_limbs is 0, input_length must also be 0 (from previous test).
239 : * Nothing to do. */
240 33926 : if (X_limbs == 0) {
241 0 : return 0;
242 : }
243 :
244 33926 : memset(X, 0, X_limbs * ciL);
245 :
246 : /* memcpy() with (NULL, 0) is undefined behaviour */
247 33926 : if (input_length != 0) {
248 33926 : size_t overhead = (X_limbs * ciL) - input_length;
249 33926 : unsigned char *Xp = (unsigned char *) X;
250 33926 : memcpy(Xp + overhead, input, input_length);
251 : }
252 :
253 33926 : mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
254 :
255 33926 : return 0;
256 : }
257 :
258 0 : int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
259 : size_t A_limbs,
260 : unsigned char *output,
261 : size_t output_length)
262 : {
263 0 : size_t stored_bytes = A_limbs * ciL;
264 : size_t bytes_to_copy;
265 :
266 0 : if (stored_bytes < output_length) {
267 0 : bytes_to_copy = stored_bytes;
268 : } else {
269 0 : bytes_to_copy = output_length;
270 :
271 : /* The output buffer is smaller than the allocated size of A.
272 : * However A may fit if its leading bytes are zero. */
273 0 : for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
274 0 : if (GET_BYTE(A, i) != 0) {
275 0 : return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
276 : }
277 : }
278 : }
279 :
280 0 : for (size_t i = 0; i < bytes_to_copy; i++) {
281 0 : output[i] = GET_BYTE(A, i);
282 : }
283 :
284 0 : if (stored_bytes < output_length) {
285 : /* Write trailing 0 bytes */
286 0 : memset(output + stored_bytes, 0, output_length - stored_bytes);
287 : }
288 :
289 0 : return 0;
290 : }
291 :
292 1118 : int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
293 : size_t X_limbs,
294 : unsigned char *output,
295 : size_t output_length)
296 : {
297 : size_t stored_bytes;
298 : size_t bytes_to_copy;
299 : unsigned char *p;
300 :
301 1118 : stored_bytes = X_limbs * ciL;
302 :
303 1118 : if (stored_bytes < output_length) {
304 : /* There is enough space in the output buffer. Write initial
305 : * null bytes and record the position at which to start
306 : * writing the significant bytes. In this case, the execution
307 : * trace of this function does not depend on the value of the
308 : * number. */
309 0 : bytes_to_copy = stored_bytes;
310 0 : p = output + output_length - stored_bytes;
311 0 : memset(output, 0, output_length - stored_bytes);
312 : } else {
313 : /* The output buffer is smaller than the allocated size of X.
314 : * However X may fit if its leading bytes are zero. */
315 1118 : bytes_to_copy = output_length;
316 1118 : p = output;
317 35993 : for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
318 34875 : if (GET_BYTE(X, i) != 0) {
319 0 : return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
320 : }
321 : }
322 : }
323 :
324 188987 : for (size_t i = 0; i < bytes_to_copy; i++) {
325 187869 : p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
326 : }
327 :
328 1118 : return 0;
329 : }
330 :
331 10269957 : void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
332 : size_t count)
333 : {
334 : size_t i, v0, v1;
335 10269957 : mbedtls_mpi_uint r0 = 0, r1;
336 :
337 10269957 : v0 = count / biL;
338 10269957 : v1 = count & (biL - 1);
339 :
340 10269957 : if (v0 > limbs || (v0 == limbs && v1 > 0)) {
341 0 : memset(X, 0, limbs * ciL);
342 0 : return;
343 : }
344 :
345 : /*
346 : * shift by count / limb_size
347 : */
348 10269957 : if (v0 > 0) {
349 44668 : for (i = 0; i < limbs - v0; i++) {
350 40910 : X[i] = X[i + v0];
351 : }
352 :
353 42184 : for (; i < limbs; i++) {
354 38426 : X[i] = 0;
355 : }
356 : }
357 :
358 : /*
359 : * shift by count % limb_size
360 : */
361 10269957 : if (v1 > 0) {
362 60914389 : for (i = limbs; i > 0; i--) {
363 50648959 : r1 = X[i - 1] << (biL - v1);
364 50648959 : X[i - 1] >>= v1;
365 50648959 : X[i - 1] |= r0;
366 50648959 : r0 = r1;
367 : }
368 : }
369 : }
370 :
371 2248440 : void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
372 : size_t count)
373 : {
374 : size_t i, v0, v1;
375 2248440 : mbedtls_mpi_uint r0 = 0, r1;
376 :
377 2248440 : v0 = count / (biL);
378 2248440 : v1 = count & (biL - 1);
379 :
380 : /*
381 : * shift by count / limb_size
382 : */
383 2248440 : if (v0 > 0) {
384 2143195 : for (i = limbs; i > v0; i--) {
385 2104317 : X[i - 1] = X[i - v0 - 1];
386 : }
387 :
388 793087 : for (; i > 0; i--) {
389 754209 : X[i - 1] = 0;
390 : }
391 : }
392 :
393 : /*
394 : * shift by count % limb_size
395 : */
396 2248440 : if (v1 > 0) {
397 22110648 : for (i = v0; i < limbs; i++) {
398 19904845 : r1 = X[i] >> (biL - v1);
399 19904845 : X[i] <<= v1;
400 19904845 : X[i] |= r0;
401 19904845 : r0 = r1;
402 : }
403 : }
404 2248440 : }
405 :
406 514083 : mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
407 : const mbedtls_mpi_uint *A,
408 : const mbedtls_mpi_uint *B,
409 : size_t limbs)
410 : {
411 514083 : mbedtls_mpi_uint c = 0;
412 :
413 2559538 : for (size_t i = 0; i < limbs; i++) {
414 2045455 : mbedtls_mpi_uint t = c + A[i];
415 2045455 : c = (t < A[i]);
416 2045455 : t += B[i];
417 2045455 : c += (t < B[i]);
418 2045455 : X[i] = t;
419 : }
420 :
421 514083 : return c;
422 : }
423 :
424 10249216 : mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
425 : const mbedtls_mpi_uint *A,
426 : size_t limbs,
427 : unsigned cond)
428 : {
429 10249216 : mbedtls_mpi_uint c = 0;
430 :
431 10249216 : mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
432 :
433 60421120 : for (size_t i = 0; i < limbs; i++) {
434 50171904 : mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
435 50171904 : mbedtls_mpi_uint t = c + X[i];
436 50171904 : c = (t < X[i]);
437 50171904 : t += add;
438 50171904 : c += (t < add);
439 50171904 : X[i] = t;
440 : }
441 :
442 10249216 : return c;
443 : }
444 :
445 24493161 : mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
446 : const mbedtls_mpi_uint *A,
447 : const mbedtls_mpi_uint *B,
448 : size_t limbs)
449 : {
450 24493161 : mbedtls_mpi_uint c = 0;
451 :
452 136992118 : for (size_t i = 0; i < limbs; i++) {
453 112498957 : mbedtls_mpi_uint z = (A[i] < c);
454 112498957 : mbedtls_mpi_uint t = A[i] - c;
455 112498957 : c = (t < B[i]) + z;
456 112498957 : X[i] = t - B[i];
457 : }
458 :
459 24493161 : return c;
460 : }
461 :
462 33842660 : mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
463 : const mbedtls_mpi_uint *s, size_t s_len,
464 : mbedtls_mpi_uint b)
465 : {
466 33842660 : mbedtls_mpi_uint c = 0; /* carry */
467 : /*
468 : * It is a documented precondition of this function that d_len >= s_len.
469 : * If that's not the case, we swap these round: this turns what would be
470 : * a buffer overflow into an incorrect result.
471 : */
472 33842660 : if (d_len < s_len) {
473 0 : s_len = d_len;
474 : }
475 33842660 : size_t excess_len = d_len - s_len;
476 33842660 : size_t steps_x8 = s_len / 8;
477 33842660 : size_t steps_x1 = s_len & 7;
478 :
479 60923897 : while (steps_x8--) {
480 27081237 : MULADDC_X8_INIT
481 : MULADDC_X8_CORE
482 : MULADDC_X8_STOP
483 : }
484 :
485 139853764 : while (steps_x1--) {
486 106011104 : MULADDC_X1_INIT
487 : MULADDC_X1_CORE
488 : MULADDC_X1_STOP
489 : }
490 :
491 83320082 : while (excess_len--) {
492 49477422 : *d += c;
493 49477422 : c = (*d < c);
494 49477422 : d++;
495 : }
496 :
497 33842660 : return c;
498 : }
499 :
500 6440638 : void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
501 : const mbedtls_mpi_uint *A, size_t A_limbs,
502 : const mbedtls_mpi_uint *B, size_t B_limbs)
503 : {
504 6440638 : memset(X, 0, (A_limbs + B_limbs) * ciL);
505 :
506 32141213 : for (size_t i = 0; i < B_limbs; i++) {
507 25700575 : (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
508 : }
509 6440638 : }
510 :
511 : /*
512 : * Fast Montgomery initialization (thanks to Tom St Denis).
513 : */
514 1044 : mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
515 : {
516 1044 : mbedtls_mpi_uint x = N[0];
517 :
518 1044 : x += ((N[0] + 2) & 4) << 1;
519 :
520 5220 : for (unsigned int i = biL; i >= 8; i /= 2) {
521 4176 : x *= (2 - (N[0] * x));
522 : }
523 :
524 1044 : return ~x + 1;
525 : }
526 :
527 169823 : void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
528 : const mbedtls_mpi_uint *A,
529 : const mbedtls_mpi_uint *B,
530 : size_t B_limbs,
531 : const mbedtls_mpi_uint *N,
532 : size_t AN_limbs,
533 : mbedtls_mpi_uint mm,
534 : mbedtls_mpi_uint *T)
535 : {
536 169823 : memset(T, 0, (2 * AN_limbs + 1) * ciL);
537 :
538 3940088 : for (size_t i = 0; i < AN_limbs; i++) {
539 : /* T = (T + u0*B + u1*N) / 2^biL */
540 3770265 : mbedtls_mpi_uint u0 = A[i];
541 3770265 : mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
542 :
543 3770265 : (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
544 3770265 : (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
545 :
546 3770265 : T++;
547 : }
548 :
549 : /*
550 : * The result we want is (T >= N) ? T - N : T.
551 : *
552 : * For better constant-time properties in this function, we always do the
553 : * subtraction, with the result in X.
554 : *
555 : * We also look to see if there was any carry in the final additions in the
556 : * loop above.
557 : */
558 :
559 169823 : mbedtls_mpi_uint carry = T[AN_limbs];
560 169823 : mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
561 :
562 : /*
563 : * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
564 : *
565 : * T can be in one of 3 ranges:
566 : *
567 : * 1) T < N : (carry, borrow) = (0, 1): we want T
568 : * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
569 : * 3) T >= R : (carry, borrow) = (1, 1): we want X
570 : *
571 : * and (carry, borrow) = (1, 0) can't happen.
572 : *
573 : * So the correct return value is already in X if (carry ^ borrow) = 0,
574 : * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
575 : */
576 169823 : mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
577 : (unsigned char *) X,
578 : (unsigned char *) T,
579 : NULL,
580 : AN_limbs * sizeof(mbedtls_mpi_uint));
581 169823 : }
582 :
583 452 : int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
584 : const mbedtls_mpi *N)
585 : {
586 452 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
587 :
588 452 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
589 452 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
590 452 : MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
591 452 : MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
592 :
593 452 : cleanup:
594 452 : return ret;
595 : }
596 :
597 : MBEDTLS_STATIC_TESTABLE
598 41456 : void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
599 : const mbedtls_mpi_uint *table,
600 : size_t limbs,
601 : size_t count,
602 : size_t index)
603 : {
604 343920 : for (size_t i = 0; i < count; i++, table += limbs) {
605 302464 : mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
606 302464 : mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
607 : }
608 41456 : }
609 :
610 : /* Fill X with n_bytes random bytes.
611 : * X must already have room for those bytes.
612 : * The ordering of the bytes returned from the RNG is suitable for
613 : * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
614 : * mbedtls_mpi_core_random()).
615 : */
616 844 : int mbedtls_mpi_core_fill_random(
617 : mbedtls_mpi_uint *X, size_t X_limbs,
618 : size_t n_bytes,
619 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
620 : {
621 844 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
622 844 : const size_t limbs = CHARS_TO_LIMBS(n_bytes);
623 844 : const size_t overhead = (limbs * ciL) - n_bytes;
624 :
625 844 : if (X_limbs < limbs) {
626 0 : return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
627 : }
628 :
629 844 : memset(X, 0, overhead);
630 844 : memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
631 844 : MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
632 844 : mbedtls_mpi_core_bigendian_to_host(X, limbs);
633 :
634 844 : cleanup:
635 844 : return ret;
636 : }
637 :
638 747 : int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
639 : mbedtls_mpi_uint min,
640 : const mbedtls_mpi_uint *N,
641 : size_t limbs,
642 : int (*f_rng)(void *, unsigned char *, size_t),
643 : void *p_rng)
644 : {
645 747 : mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
646 747 : size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
647 747 : size_t n_bytes = (n_bits + 7) / 8;
648 747 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
649 :
650 : /*
651 : * When min == 0, each try has at worst a probability 1/2 of failing
652 : * (the msb has a probability 1/2 of being 0, and then the result will
653 : * be < N), so after 30 tries failure probability is a most 2**(-30).
654 : *
655 : * When N is just below a power of 2, as is the case when generating
656 : * a random scalar on most elliptic curves, 1 try is enough with
657 : * overwhelming probability. When N is just above a power of 2,
658 : * as when generating a random scalar on secp224k1, each try has
659 : * a probability of failing that is almost 1/2.
660 : *
661 : * The probabilities are almost the same if min is nonzero but negligible
662 : * compared to N. This is always the case when N is crypto-sized, but
663 : * it's convenient to support small N for testing purposes. When N
664 : * is small, use a higher repeat count, otherwise the probability of
665 : * failure is macroscopic.
666 : */
667 747 : int count = (n_bytes > 4 ? 30 : 250);
668 :
669 : /*
670 : * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
671 : * when f_rng is a suitably parametrized instance of HMAC_DRBG:
672 : * - use the same byte ordering;
673 : * - keep the leftmost n_bits bits of the generated octet string;
674 : * - try until result is in the desired range.
675 : * This also avoids any bias, which is especially important for ECDSA.
676 : */
677 : do {
678 768 : MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
679 : n_bytes,
680 : f_rng, p_rng));
681 768 : mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
682 :
683 768 : if (--count == 0) {
684 0 : ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
685 0 : goto cleanup;
686 : }
687 :
688 768 : ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
689 768 : lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
690 768 : } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
691 :
692 747 : cleanup:
693 747 : return ret;
694 : }
695 :
696 1006 : static size_t exp_mod_get_window_size(size_t Ebits)
697 : {
698 : #if MBEDTLS_MPI_WINDOW_SIZE >= 6
699 : return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
700 : #elif MBEDTLS_MPI_WINDOW_SIZE == 5
701 : return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
702 : #elif MBEDTLS_MPI_WINDOW_SIZE > 1
703 1006 : return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
704 : #else
705 : (void) Ebits;
706 : return 1;
707 : #endif
708 : }
709 :
710 503 : size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
711 : {
712 503 : const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
713 503 : const size_t welem = ((size_t) 1) << wsize;
714 :
715 : /* How big does each part of the working memory pool need to be? */
716 503 : const size_t table_limbs = welem * AN_limbs;
717 503 : const size_t select_limbs = AN_limbs;
718 503 : const size_t temp_limbs = 2 * AN_limbs + 1;
719 :
720 503 : return table_limbs + select_limbs + temp_limbs;
721 : }
722 :
723 503 : static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
724 : const mbedtls_mpi_uint *N,
725 : size_t AN_limbs,
726 : mbedtls_mpi_uint mm,
727 : const mbedtls_mpi_uint *RR,
728 : size_t welem,
729 : mbedtls_mpi_uint *Wtable,
730 : mbedtls_mpi_uint *temp)
731 : {
732 : /* W[0] = 1 (in Montgomery presentation) */
733 503 : memset(Wtable, 0, AN_limbs * ciL);
734 503 : Wtable[0] = 1;
735 503 : mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
736 :
737 : /* W[1] = A (already in Montgomery presentation) */
738 503 : mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
739 503 : memcpy(W1, A, AN_limbs * ciL);
740 :
741 : /* W[i+1] = W[i] * W[1], i >= 2 */
742 503 : mbedtls_mpi_uint *Wprev = W1;
743 995 : for (size_t i = 2; i < welem; i++) {
744 492 : mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
745 492 : mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
746 492 : Wprev = Wcur;
747 : }
748 503 : }
749 :
750 : #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
751 : void (*mbedtls_safe_codepath_hook)(void) = NULL;
752 : void (*mbedtls_unsafe_codepath_hook)(void) = NULL;
753 : #endif
754 :
755 : /*
756 : * This function calculates the indices of the exponent where the exponentiation algorithm should
757 : * start processing.
758 : *
759 : * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
760 : * this function is not constant time with respect to the exponent (parameter E).
761 : */
762 503 : static inline void exp_mod_calc_first_bit_optionally_safe(const mbedtls_mpi_uint *E,
763 : size_t E_limbs,
764 : int E_public,
765 : size_t *E_limb_index,
766 : size_t *E_bit_index)
767 : {
768 503 : if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
769 : /*
770 : * Skip leading zero bits.
771 : */
772 345 : size_t E_bits = mbedtls_mpi_core_bitlen(E, E_limbs);
773 345 : if (E_bits == 0) {
774 : /*
775 : * If E is 0 mbedtls_mpi_core_bitlen() returns 0. Even if that is the case, we will want
776 : * to represent it as a single 0 bit and as such the bitlength will be 1.
777 : */
778 0 : E_bits = 1;
779 : }
780 :
781 345 : *E_limb_index = E_bits / biL;
782 345 : *E_bit_index = E_bits % biL;
783 :
784 : #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
785 : if (mbedtls_unsafe_codepath_hook != NULL) {
786 : mbedtls_unsafe_codepath_hook();
787 : }
788 : #endif
789 : } else {
790 : /*
791 : * Here we need to be constant time with respect to E and can't do anything better than
792 : * start at the first allocated bit.
793 : */
794 158 : *E_limb_index = E_limbs;
795 158 : *E_bit_index = 0;
796 : #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
797 : if (mbedtls_safe_codepath_hook != NULL) {
798 : mbedtls_safe_codepath_hook();
799 : }
800 : #endif
801 : }
802 503 : }
803 :
804 : /*
805 : * Warning! If the parameter window_public has MBEDTLS_MPI_IS_PUBLIC as its value, this function is
806 : * not constant time with respect to the window parameter and consequently the exponent of the
807 : * exponentiation (parameter E of mbedtls_mpi_core_exp_mod_optionally_safe).
808 : */
809 47321 : static inline void exp_mod_table_lookup_optionally_safe(mbedtls_mpi_uint *Wselect,
810 : mbedtls_mpi_uint *Wtable,
811 : size_t AN_limbs, size_t welem,
812 : mbedtls_mpi_uint window,
813 : int window_public)
814 : {
815 47321 : if (window_public == MBEDTLS_MPI_IS_PUBLIC) {
816 5865 : memcpy(Wselect, Wtable + window * AN_limbs, AN_limbs * ciL);
817 : #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
818 : if (mbedtls_unsafe_codepath_hook != NULL) {
819 : mbedtls_unsafe_codepath_hook();
820 : }
821 : #endif
822 : } else {
823 : /* Select Wtable[window] without leaking window through
824 : * memory access patterns. */
825 41456 : mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
826 : AN_limbs, welem, window);
827 : #if defined(MBEDTLS_TEST_HOOKS) && !defined(MBEDTLS_THREADING_C)
828 : if (mbedtls_safe_codepath_hook != NULL) {
829 : mbedtls_safe_codepath_hook();
830 : }
831 : #endif
832 : }
833 47321 : }
834 :
835 : /* Exponentiation: X := A^E mod N.
836 : *
837 : * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
838 : * this function is not constant time with respect to the exponent (parameter E).
839 : *
840 : * A must already be in Montgomery form.
841 : *
842 : * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
843 : *
844 : * RR must contain 2^{2*biL} mod N.
845 : *
846 : * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
847 : * (The difference is that the body in our loop processes a single bit instead
848 : * of a full window.)
849 : */
850 503 : static void mbedtls_mpi_core_exp_mod_optionally_safe(mbedtls_mpi_uint *X,
851 : const mbedtls_mpi_uint *A,
852 : const mbedtls_mpi_uint *N,
853 : size_t AN_limbs,
854 : const mbedtls_mpi_uint *E,
855 : size_t E_limbs,
856 : int E_public,
857 : const mbedtls_mpi_uint *RR,
858 : mbedtls_mpi_uint *T)
859 : {
860 : /* We'll process the bits of E from most significant
861 : * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
862 : * (limb_index=0, E_bit_index=0). */
863 503 : size_t E_limb_index = E_limbs;
864 503 : size_t E_bit_index = 0;
865 503 : exp_mod_calc_first_bit_optionally_safe(E, E_limbs, E_public,
866 : &E_limb_index, &E_bit_index);
867 :
868 503 : const size_t wsize = exp_mod_get_window_size(E_limb_index * biL);
869 503 : const size_t welem = ((size_t) 1) << wsize;
870 :
871 : /* This is how we will use the temporary storage T, which must have space
872 : * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
873 503 : const size_t table_limbs = welem * AN_limbs;
874 503 : const size_t select_limbs = AN_limbs;
875 :
876 : /* Pointers to specific parts of the temporary working memory pool */
877 503 : mbedtls_mpi_uint *const Wtable = T;
878 503 : mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
879 503 : mbedtls_mpi_uint *const temp = Wselect + select_limbs;
880 :
881 : /*
882 : * Window precomputation
883 : */
884 :
885 503 : const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
886 :
887 : /* Set Wtable[i] = A^i (in Montgomery representation) */
888 503 : exp_mod_precompute_window(A, N, AN_limbs,
889 : mm, RR,
890 : welem, Wtable, temp);
891 :
892 : /*
893 : * Fixed window exponentiation
894 : */
895 :
896 : /* X = 1 (in Montgomery presentation) initially */
897 503 : memcpy(X, Wtable, AN_limbs * ciL);
898 :
899 : /* At any given time, window contains window_bits bits from E.
900 : * window_bits can go up to wsize. */
901 503 : size_t window_bits = 0;
902 503 : mbedtls_mpi_uint window = 0;
903 :
904 : do {
905 : /* Square */
906 120425 : mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
907 :
908 : /* Move to the next bit of the exponent */
909 120425 : if (E_bit_index == 0) {
910 1790 : --E_limb_index;
911 1790 : E_bit_index = biL - 1;
912 : } else {
913 118635 : --E_bit_index;
914 : }
915 : /* Insert next exponent bit into window */
916 120425 : ++window_bits;
917 120425 : window <<= 1;
918 120425 : window |= (E[E_limb_index] >> E_bit_index) & 1;
919 :
920 : /* Clear window if it's full. Also clear the window at the end,
921 : * when we've finished processing the exponent. */
922 120425 : if (window_bits == wsize ||
923 73184 : (E_bit_index == 0 && E_limb_index == 0)) {
924 :
925 47321 : exp_mod_table_lookup_optionally_safe(Wselect, Wtable, AN_limbs, welem,
926 : window, E_public);
927 : /* Multiply X by the selected element. */
928 47321 : mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
929 : temp);
930 47321 : window = 0;
931 47321 : window_bits = 0;
932 : }
933 120425 : } while (!(E_bit_index == 0 && E_limb_index == 0));
934 503 : }
935 :
936 158 : void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
937 : const mbedtls_mpi_uint *A,
938 : const mbedtls_mpi_uint *N, size_t AN_limbs,
939 : const mbedtls_mpi_uint *E, size_t E_limbs,
940 : const mbedtls_mpi_uint *RR,
941 : mbedtls_mpi_uint *T)
942 : {
943 158 : mbedtls_mpi_core_exp_mod_optionally_safe(X,
944 : A,
945 : N,
946 : AN_limbs,
947 : E,
948 : E_limbs,
949 : MBEDTLS_MPI_IS_SECRET,
950 : RR,
951 : T);
952 158 : }
953 :
954 345 : void mbedtls_mpi_core_exp_mod_unsafe(mbedtls_mpi_uint *X,
955 : const mbedtls_mpi_uint *A,
956 : const mbedtls_mpi_uint *N, size_t AN_limbs,
957 : const mbedtls_mpi_uint *E, size_t E_limbs,
958 : const mbedtls_mpi_uint *RR,
959 : mbedtls_mpi_uint *T)
960 : {
961 345 : mbedtls_mpi_core_exp_mod_optionally_safe(X,
962 : A,
963 : N,
964 : AN_limbs,
965 : E,
966 : E_limbs,
967 : MBEDTLS_MPI_IS_PUBLIC,
968 : RR,
969 : T);
970 345 : }
971 :
972 4485961 : mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
973 : const mbedtls_mpi_uint *A,
974 : mbedtls_mpi_uint c, /* doubles as carry */
975 : size_t limbs)
976 : {
977 25675484 : for (size_t i = 0; i < limbs; i++) {
978 21189523 : mbedtls_mpi_uint s = A[i];
979 21189523 : mbedtls_mpi_uint t = s - c;
980 21189523 : c = (t > s);
981 21189523 : X[i] = t;
982 : }
983 :
984 4485961 : return c;
985 : }
986 :
987 0 : mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
988 : size_t limbs)
989 : {
990 0 : volatile const mbedtls_mpi_uint *force_read_A = A;
991 0 : mbedtls_mpi_uint bits = 0;
992 :
993 0 : for (size_t i = 0; i < limbs; i++) {
994 0 : bits |= force_read_A[i];
995 : }
996 :
997 0 : return mbedtls_ct_bool(bits);
998 : }
999 :
1000 541 : void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
1001 : const mbedtls_mpi_uint *A,
1002 : const mbedtls_mpi_uint *N,
1003 : size_t AN_limbs,
1004 : mbedtls_mpi_uint mm,
1005 : const mbedtls_mpi_uint *rr,
1006 : mbedtls_mpi_uint *T)
1007 : {
1008 541 : mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
1009 541 : }
1010 :
1011 503 : void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
1012 : const mbedtls_mpi_uint *A,
1013 : const mbedtls_mpi_uint *N,
1014 : size_t AN_limbs,
1015 : mbedtls_mpi_uint mm,
1016 : mbedtls_mpi_uint *T)
1017 : {
1018 503 : const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
1019 :
1020 503 : mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
1021 503 : }
1022 :
1023 : /*
1024 : * Compute X = A - B mod N.
1025 : * Both A and B must be in [0, N) and so will the output.
1026 : */
1027 5124608 : static void mpi_core_sub_mod(mbedtls_mpi_uint *X,
1028 : const mbedtls_mpi_uint *A,
1029 : const mbedtls_mpi_uint *B,
1030 : const mbedtls_mpi_uint *N,
1031 : size_t limbs)
1032 : {
1033 5124608 : mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, limbs);
1034 5124608 : (void) mbedtls_mpi_core_add_if(X, N, limbs, (unsigned) c);
1035 5124608 : }
1036 :
1037 : /*
1038 : * Divide X by 2 mod N in place, assuming N is odd.
1039 : * The input must be in [0, N) and so will the output.
1040 : */
1041 : MBEDTLS_STATIC_TESTABLE
1042 5124608 : void mbedtls_mpi_core_div2_mod_odd(mbedtls_mpi_uint *X,
1043 : const mbedtls_mpi_uint *N,
1044 : size_t limbs)
1045 : {
1046 : /* If X is odd, add N to make it even before shifting. */
1047 5124608 : unsigned odd = (unsigned) X[0] & 1;
1048 5124608 : mbedtls_mpi_uint c = mbedtls_mpi_core_add_if(X, N, limbs, odd);
1049 5124608 : mbedtls_mpi_core_shift_r(X, limbs, 1);
1050 5124608 : X[limbs - 1] |= c << (biL - 1);
1051 5124608 : }
1052 :
1053 : /*
1054 : * Constant-time GCD and modular inversion - odd modulus.
1055 : *
1056 : * Pre-conditions: see public documentation.
1057 : *
1058 : * See https://www.jstage.jst.go.jp/article/transinf/E106.D/9/E106.D_2022ICP0009/_pdf
1059 : *
1060 : * The paper gives two computationally equivalent algorithms: Alg 7 (readable)
1061 : * and Alg 8 (constant-time). We use a third version that's hopefully both:
1062 : *
1063 : * u, v = A, N # N is called p in the paper but doesn't have to be prime
1064 : * q, r = 0, 1
1065 : * repeat bits(A_limbs + N_limbs) times:
1066 : * d = v - u # t1 in Alg 7
1067 : * t1 = (u and v both odd) ? u : d # t1 in Alg 8
1068 : * t2 = (u and v both odd) ? d : (u odd) ? v : u # t2 in Alg 8
1069 : * t2 >>= 1
1070 : * swap = t1 > t2 # similar to s, z in Alg 8
1071 : * u, v = (swap) ? t2, t1 : t1, t2
1072 : *
1073 : * d = r - q mod N # t2 in Alg 7
1074 : * t1 = (u and v both odd) ? q : d # t3 in Alg 8
1075 : * t2 = (u and v both odd) ? d : (u odd) ? r : q # t4 Alg 8
1076 : * t2 /= 2 mod N # see below (pre_com)
1077 : * q, r = (swap) ? t2, t1 : t1, t2
1078 : * return v, q # v: GCD, see Alg 6; q: no mult by pre_com, see below
1079 : *
1080 : * The ternary operators in the above pseudo-code need to be realised in a
1081 : * constant-time fashion. We use conditional assign for t1, t2 and conditional
1082 : * swap for the final update. (Note: the similarity between branches of Alg 7
1083 : * are highlighted in tables 2 and 3 and the surrounding text.)
1084 : *
1085 : * Also, we re-order operations, grouping things related to the inverse, which
1086 : * facilitates making its computation optional, and requires fewer temporaries.
1087 : *
1088 : * The only actual change from the paper is dropping the trick with pre_com,
1089 : * which I think complicates things for no benefit.
1090 : * See the comment on the big I != NULL block below for details.
1091 : */
1092 9733 : void mbedtls_mpi_core_gcd_modinv_odd(mbedtls_mpi_uint *G,
1093 : mbedtls_mpi_uint *I,
1094 : const mbedtls_mpi_uint *A,
1095 : size_t A_limbs,
1096 : const mbedtls_mpi_uint *N,
1097 : size_t N_limbs,
1098 : mbedtls_mpi_uint *T)
1099 : {
1100 : /* GCD and modinv, names common to Alg 7 and Alg 8 */
1101 9733 : mbedtls_mpi_uint *u = T + 0 * N_limbs;
1102 9733 : mbedtls_mpi_uint *v = G;
1103 :
1104 : /* GCD and modinv, my name (t1, t2 from Alg 7) */
1105 9733 : mbedtls_mpi_uint *d = T + 1 * N_limbs;
1106 :
1107 : /* GCD and modinv, names from Alg 8 (note: t1, t2 from Alg 7 are d above) */
1108 9733 : mbedtls_mpi_uint *t1 = T + 2 * N_limbs;
1109 9733 : mbedtls_mpi_uint *t2 = T + 3 * N_limbs;
1110 :
1111 : /* modinv only, names common to Alg 7 and Alg 8 */
1112 9733 : mbedtls_mpi_uint *q = I;
1113 9733 : mbedtls_mpi_uint *r = I != NULL ? T + 4 * N_limbs : NULL;
1114 :
1115 : /*
1116 : * Initial values:
1117 : * u, v = A, N
1118 : * q, r = 0, 1
1119 : *
1120 : * We only write to G (aka v) after reading from inputs (A and N), which
1121 : * allows aliasing, except with N when I != NULL, as then we'll be operating
1122 : * mod N on q and r later - see the public documentation.
1123 : */
1124 9733 : if (A_limbs > N_limbs) {
1125 : /* Violating this precondition should not result in memory errors. */
1126 0 : A_limbs = N_limbs;
1127 : }
1128 9733 : memcpy(u, A, A_limbs * ciL);
1129 9733 : memset((char *) u + A_limbs * ciL, 0, (N_limbs - A_limbs) * ciL);
1130 :
1131 : /* Avoid possible UB with memcpy when src == dst. */
1132 9733 : if (v != N) {
1133 9733 : memcpy(v, N, N_limbs * ciL);
1134 : }
1135 :
1136 9733 : if (I != NULL) {
1137 9729 : memset(q, 0, N_limbs * ciL);
1138 :
1139 9729 : memset(r, 0, N_limbs * ciL);
1140 9729 : r[0] = 1;
1141 : }
1142 :
1143 : /*
1144 : * At each step, out of u, v, v - u we keep one, shift another, and discard
1145 : * the third, then update (u, v) with the ordered result.
1146 : * Then we mirror those actions with q, r, r - q mod N.
1147 : *
1148 : * Loop invariants:
1149 : * u <= v (on entry: A <= N)
1150 : * GCD(u, v) == GCD(A, N) (on entry: trivial)
1151 : * v = A * q mod N (on entry: N = A * 0 mod N)
1152 : * u = A * r mod N (on entry: A = A * 1 mod N)
1153 : * q, r in [0, N) (on entry: 0, 1)
1154 : *
1155 : * On exit:
1156 : * u = 0
1157 : * v = GCD(A, N) = A * q mod N
1158 : * if v == 1 then 1 = A * q mod N ie q is A's inverse mod N
1159 : * r = 0
1160 : *
1161 : * The exit state is a fixed point of the loop's body.
1162 : * Alg 7 and Alg 8 use 2 * bitlen(N) iterations but Theorem 2 (above in the
1163 : * paper) says bitlen(A) + bitlen(N) is actually enough.
1164 : */
1165 5146757 : for (size_t i = 0; i < (A_limbs + N_limbs) * biL; i++) {
1166 : /* s, z in Alg 8 - use meaningful names instead */
1167 5137024 : mbedtls_ct_condition_t u_odd = mbedtls_ct_bool(u[0] & 1);
1168 5137024 : mbedtls_ct_condition_t v_odd = mbedtls_ct_bool(v[0] & 1);
1169 :
1170 : /* Other conditions that will be useful below */
1171 5137024 : mbedtls_ct_condition_t u_odd_v_odd = mbedtls_ct_bool_and(u_odd, v_odd);
1172 5137024 : mbedtls_ct_condition_t v_even = mbedtls_ct_bool_not(v_odd);
1173 5137024 : mbedtls_ct_condition_t u_odd_v_even = mbedtls_ct_bool_and(u_odd, v_even);
1174 :
1175 : /* This is called t1 in Alg 7 (no name in Alg 8).
1176 : * We know that u <= v so there is no carry */
1177 5137024 : (void) mbedtls_mpi_core_sub(d, v, u, N_limbs);
1178 :
1179 : /* t1 (the thing that's kept) can be d (default) or u (if t2 is d) */
1180 5137024 : memcpy(t1, d, N_limbs * ciL);
1181 5137024 : mbedtls_mpi_core_cond_assign(t1, u, N_limbs, u_odd_v_odd);
1182 :
1183 : /* t2 (the thing that's shifted) can be u (if even), or v (if even),
1184 : * or d (which is even if both u and v were odd) */
1185 5137024 : memcpy(t2, u, N_limbs * ciL);
1186 5137024 : mbedtls_mpi_core_cond_assign(t2, v, N_limbs, u_odd_v_even);
1187 5137024 : mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
1188 :
1189 5137024 : mbedtls_mpi_core_shift_r(t2, N_limbs, 1); // t2 is even
1190 :
1191 : /* Update u, v and re-order them if needed */
1192 5137024 : memcpy(u, t1, N_limbs * ciL);
1193 5137024 : memcpy(v, t2, N_limbs * ciL);
1194 5137024 : mbedtls_ct_condition_t swap = mbedtls_mpi_core_lt_ct(v, u, N_limbs);
1195 5137024 : mbedtls_mpi_core_cond_swap(u, v, N_limbs, swap);
1196 :
1197 : /* Now, if modinv was requested, do the same with q, r, but:
1198 : * - decisions still based on u and v (their initial values);
1199 : * - operations are now mod N;
1200 : * - we re-use t1, t2 for what the paper calls t3, t4 in Alg 8.
1201 : *
1202 : * Here we slightly diverge from the paper and instead do the obvious
1203 : * thing that preserves the invariants involving q and r: mirror
1204 : * operations on u and v, ie also divide by 2 here (mod N).
1205 : *
1206 : * The paper uses a trick where it replaces division by 2 with
1207 : * multiplication by 2 here, and compensates in the end by multiplying
1208 : * by pre_com, which is probably intended as an optimisation.
1209 : *
1210 : * However I believe it's not actually an optimisation, since
1211 : * constant-time modular multiplication by 2 (left-shift + conditional
1212 : * subtract) is just as costly as constant-time modular division by 2
1213 : * (conditional add + right-shift). So, skip it and keep things simple.
1214 : */
1215 5137024 : if (I != NULL) {
1216 : /* This is called t2 in Alg 7 (no name in Alg 8). */
1217 5124608 : mpi_core_sub_mod(d, q, r, N, N_limbs);
1218 :
1219 : /* t3 (the thing that's kept) */
1220 5124608 : memcpy(t1, d, N_limbs * ciL);
1221 5124608 : mbedtls_mpi_core_cond_assign(t1, r, N_limbs, u_odd_v_odd);
1222 :
1223 : /* t4 (the thing that's shifted) */
1224 5124608 : memcpy(t2, r, N_limbs * ciL);
1225 5124608 : mbedtls_mpi_core_cond_assign(t2, q, N_limbs, u_odd_v_even);
1226 5124608 : mbedtls_mpi_core_cond_assign(t2, d, N_limbs, u_odd_v_odd);
1227 :
1228 5124608 : mbedtls_mpi_core_div2_mod_odd(t2, N, N_limbs);
1229 :
1230 : /* Update and possibly swap */
1231 5124608 : memcpy(r, t1, N_limbs * ciL);
1232 5124608 : memcpy(q, t2, N_limbs * ciL);
1233 5124608 : mbedtls_mpi_core_cond_swap(r, q, N_limbs, swap);
1234 : }
1235 : }
1236 :
1237 : /* G and I already hold the correct values by virtue of being aliased */
1238 9733 : }
1239 :
1240 : #endif /* MBEDTLS_BIGNUM_C */
|