Line data Source code
1 : /*
2 : * Elliptic curves over GF(p): generic functions
3 : *
4 : * Copyright The Mbed TLS Contributors
5 : * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 : */
7 :
8 : /*
9 : * References:
10 : *
11 : * SEC1 https://www.secg.org/sec1-v2.pdf
12 : * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13 : * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14 : * RFC 4492 for the related TLS structures and constants
15 : * - https://www.rfc-editor.org/rfc/rfc4492
16 : * RFC 7748 for the Curve448 and Curve25519 curve definitions
17 : * - https://www.rfc-editor.org/rfc/rfc7748
18 : *
19 : * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20 : *
21 : * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22 : * for elliptic curve cryptosystems. In : Cryptographic Hardware and
23 : * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24 : * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25 : *
26 : * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27 : * render ECC resistant against Side Channel Attacks. IACR Cryptology
28 : * ePrint Archive, 2004, vol. 2004, p. 342.
29 : * <http://eprint.iacr.org/2004/342.pdf>
30 : */
31 :
32 : #include "common.h"
33 :
34 : /**
35 : * \brief Function level alternative implementation.
36 : *
37 : * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38 : * replace certain functions in this module. The alternative implementations are
39 : * typically hardware accelerators and need to activate the hardware before the
40 : * computation starts and deactivate it after it finishes. The
41 : * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42 : * this purpose.
43 : *
44 : * To preserve the correct functionality the following conditions must hold:
45 : *
46 : * - The alternative implementation must be activated by
47 : * mbedtls_internal_ecp_init() before any of the replaceable functions is
48 : * called.
49 : * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50 : * implementation is activated.
51 : * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52 : * implementation is activated.
53 : * - Public functions must not return while the alternative implementation is
54 : * activated.
55 : * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56 : * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57 : * \endcode ensures that the alternative implementation supports the current
58 : * group.
59 : */
60 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 : #endif
62 :
63 : #if defined(MBEDTLS_ECP_LIGHT)
64 :
65 : #include "mbedtls/ecp.h"
66 : #include "mbedtls/threading.h"
67 : #include "mbedtls/platform_util.h"
68 : #include "mbedtls/error.h"
69 :
70 : #include "bn_mul.h"
71 : #include "bignum_internal.h"
72 : #include "ecp_invasive.h"
73 :
74 : #include <string.h>
75 :
76 : #if !defined(MBEDTLS_ECP_ALT)
77 :
78 : #include "mbedtls/platform.h"
79 :
80 : #include "ecp_internal_alt.h"
81 :
82 : #if defined(MBEDTLS_SELF_TEST)
83 : /*
84 : * Counts of point addition and doubling, and field multiplications.
85 : * Used to test resistance of point multiplication to simple timing attacks.
86 : */
87 : #if defined(MBEDTLS_ECP_C)
88 : static unsigned long add_count, dbl_count;
89 : #endif /* MBEDTLS_ECP_C */
90 : static unsigned long mul_count;
91 : #endif
92 :
93 : #if defined(MBEDTLS_ECP_RESTARTABLE)
94 : /*
95 : * Maximum number of "basic operations" to be done in a row.
96 : *
97 : * Default value 0 means that ECC operations will not yield.
98 : * Note that regardless of the value of ecp_max_ops, always at
99 : * least one step is performed before yielding.
100 : *
101 : * Setting ecp_max_ops=1 can be suitable for testing purposes
102 : * as it will interrupt computation at all possible points.
103 : */
104 : static unsigned ecp_max_ops = 0;
105 :
106 : /*
107 : * Set ecp_max_ops
108 : */
109 0 : void mbedtls_ecp_set_max_ops(unsigned max_ops)
110 : {
111 0 : ecp_max_ops = max_ops;
112 0 : }
113 :
114 : /*
115 : * Check if restart is enabled
116 : */
117 6542 : int mbedtls_ecp_restart_is_enabled(void)
118 : {
119 6542 : return ecp_max_ops != 0;
120 : }
121 :
122 : /*
123 : * Restart sub-context for ecp_mul_comb()
124 : */
125 : struct mbedtls_ecp_restart_mul {
126 : mbedtls_ecp_point R; /* current intermediate result */
127 : size_t i; /* current index in various loops, 0 outside */
128 : mbedtls_ecp_point *T; /* table for precomputed points */
129 : unsigned char T_size; /* number of points in table T */
130 : enum { /* what were we doing last time we returned? */
131 : ecp_rsm_init = 0, /* nothing so far, dummy initial state */
132 : ecp_rsm_pre_dbl, /* precompute 2^n multiples */
133 : ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
134 : ecp_rsm_pre_add, /* precompute remaining points by adding */
135 : ecp_rsm_pre_norm_add, /* normalize all precomputed points */
136 : ecp_rsm_comb_core, /* ecp_mul_comb_core() */
137 : ecp_rsm_final_norm, /* do the final normalization */
138 : } state;
139 : };
140 :
141 : /*
142 : * Init restart_mul sub-context
143 : */
144 0 : static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
145 : {
146 0 : mbedtls_ecp_point_init(&ctx->R);
147 0 : ctx->i = 0;
148 0 : ctx->T = NULL;
149 0 : ctx->T_size = 0;
150 0 : ctx->state = ecp_rsm_init;
151 0 : }
152 :
153 : /*
154 : * Free the components of a restart_mul sub-context
155 : */
156 1041 : static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
157 : {
158 : unsigned char i;
159 :
160 1041 : if (ctx == NULL) {
161 1041 : return;
162 : }
163 :
164 0 : mbedtls_ecp_point_free(&ctx->R);
165 :
166 0 : if (ctx->T != NULL) {
167 0 : for (i = 0; i < ctx->T_size; i++) {
168 0 : mbedtls_ecp_point_free(ctx->T + i);
169 : }
170 0 : mbedtls_free(ctx->T);
171 : }
172 :
173 0 : ecp_restart_rsm_init(ctx);
174 : }
175 :
176 : /*
177 : * Restart context for ecp_muladd()
178 : */
179 : struct mbedtls_ecp_restart_muladd {
180 : mbedtls_ecp_point mP; /* mP value */
181 : mbedtls_ecp_point R; /* R intermediate result */
182 : enum { /* what should we do next? */
183 : ecp_rsma_mul1 = 0, /* first multiplication */
184 : ecp_rsma_mul2, /* second multiplication */
185 : ecp_rsma_add, /* addition */
186 : ecp_rsma_norm, /* normalization */
187 : } state;
188 : };
189 :
190 : /*
191 : * Init restart_muladd sub-context
192 : */
193 0 : static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
194 : {
195 0 : mbedtls_ecp_point_init(&ctx->mP);
196 0 : mbedtls_ecp_point_init(&ctx->R);
197 0 : ctx->state = ecp_rsma_mul1;
198 0 : }
199 :
200 : /*
201 : * Free the components of a restart_muladd sub-context
202 : */
203 1041 : static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
204 : {
205 1041 : if (ctx == NULL) {
206 1041 : return;
207 : }
208 :
209 0 : mbedtls_ecp_point_free(&ctx->mP);
210 0 : mbedtls_ecp_point_free(&ctx->R);
211 :
212 0 : ecp_restart_ma_init(ctx);
213 : }
214 :
215 : /*
216 : * Initialize a restart context
217 : */
218 2302 : void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
219 : {
220 2302 : ctx->ops_done = 0;
221 2302 : ctx->depth = 0;
222 2302 : ctx->rsm = NULL;
223 2302 : ctx->ma = NULL;
224 2302 : }
225 :
226 : /*
227 : * Free the components of a restart context
228 : */
229 1041 : void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
230 : {
231 1041 : if (ctx == NULL) {
232 0 : return;
233 : }
234 :
235 1041 : ecp_restart_rsm_free(ctx->rsm);
236 1041 : mbedtls_free(ctx->rsm);
237 :
238 1041 : ecp_restart_ma_free(ctx->ma);
239 1041 : mbedtls_free(ctx->ma);
240 :
241 1041 : mbedtls_ecp_restart_init(ctx);
242 : }
243 :
244 : /*
245 : * Check if we can do the next step
246 : */
247 513787 : int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
248 : mbedtls_ecp_restart_ctx *rs_ctx,
249 : unsigned ops)
250 : {
251 513787 : if (rs_ctx != NULL && ecp_max_ops != 0) {
252 : /* scale depending on curve size: the chosen reference is 256-bit,
253 : * and multiplication is quadratic. Round to the closest integer. */
254 0 : if (grp->pbits >= 512) {
255 0 : ops *= 4;
256 0 : } else if (grp->pbits >= 384) {
257 0 : ops *= 2;
258 : }
259 :
260 : /* Avoid infinite loops: always allow first step.
261 : * Because of that, however, it's not generally true
262 : * that ops_done <= ecp_max_ops, so the check
263 : * ops_done > ecp_max_ops below is mandatory. */
264 0 : if ((rs_ctx->ops_done != 0) &&
265 0 : (rs_ctx->ops_done > ecp_max_ops ||
266 0 : ops > ecp_max_ops - rs_ctx->ops_done)) {
267 0 : return MBEDTLS_ERR_ECP_IN_PROGRESS;
268 : }
269 :
270 : /* update running count */
271 0 : rs_ctx->ops_done += ops;
272 : }
273 :
274 513787 : return 0;
275 : }
276 :
277 : /* Call this when entering a function that needs its own sub-context */
278 : #define ECP_RS_ENTER(SUB) do { \
279 : /* reset ops count for this call if top-level */ \
280 : if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
281 : rs_ctx->ops_done = 0; \
282 : \
283 : /* set up our own sub-context if needed */ \
284 : if (mbedtls_ecp_restart_is_enabled() && \
285 : rs_ctx != NULL && rs_ctx->SUB == NULL) \
286 : { \
287 : rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
288 : if (rs_ctx->SUB == NULL) \
289 : return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
290 : \
291 : ecp_restart_## SUB ##_init(rs_ctx->SUB); \
292 : } \
293 : } while (0)
294 :
295 : /* Call this when leaving a function that needs its own sub-context */
296 : #define ECP_RS_LEAVE(SUB) do { \
297 : /* clear our sub-context when not in progress (done or error) */ \
298 : if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
299 : ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
300 : { \
301 : ecp_restart_## SUB ##_free(rs_ctx->SUB); \
302 : mbedtls_free(rs_ctx->SUB); \
303 : rs_ctx->SUB = NULL; \
304 : } \
305 : \
306 : if (rs_ctx != NULL) \
307 : rs_ctx->depth--; \
308 : } while (0)
309 :
310 : #else /* MBEDTLS_ECP_RESTARTABLE */
311 :
312 : #define ECP_RS_ENTER(sub) (void) rs_ctx;
313 : #define ECP_RS_LEAVE(sub) (void) rs_ctx;
314 :
315 : #endif /* MBEDTLS_ECP_RESTARTABLE */
316 :
317 : #if defined(MBEDTLS_ECP_C)
318 9616 : static void mpi_init_many(mbedtls_mpi *arr, size_t size)
319 : {
320 51230 : while (size--) {
321 41614 : mbedtls_mpi_init(arr++);
322 : }
323 9616 : }
324 :
325 9616 : static void mpi_free_many(mbedtls_mpi *arr, size_t size)
326 : {
327 51230 : while (size--) {
328 41614 : mbedtls_mpi_free(arr++);
329 : }
330 9616 : }
331 : #endif /* MBEDTLS_ECP_C */
332 :
333 : /*
334 : * List of supported curves:
335 : * - internal ID
336 : * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
337 : * - size in bits
338 : * - readable name
339 : *
340 : * Curves are listed in order: largest curves first, and for a given size,
341 : * fastest curves first.
342 : *
343 : * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
344 : */
345 : static const mbedtls_ecp_curve_info ecp_supported_curves[] =
346 : {
347 : #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
348 : { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
349 : #endif
350 : #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
351 : { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
352 : #endif
353 : #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
354 : { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
355 : #endif
356 : #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
357 : { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
358 : #endif
359 : #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
360 : { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
361 : #endif
362 : #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
363 : { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
364 : #endif
365 : #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
366 : { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
367 : #endif
368 : #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
369 : { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
370 : #endif
371 : #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
372 : { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
373 : #endif
374 : #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
375 : { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
376 : #endif
377 : #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
378 : { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
379 : #endif
380 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
381 : { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
382 : #endif
383 : #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
384 : { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
385 : #endif
386 : { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
387 : };
388 :
389 : #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
390 : sizeof(ecp_supported_curves[0])
391 :
392 : static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
393 :
394 : /*
395 : * List of supported curves and associated info
396 : */
397 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
398 : {
399 0 : return ecp_supported_curves;
400 : }
401 :
402 : /*
403 : * List of supported curves, group ID only
404 : */
405 0 : const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
406 : {
407 : static int init_done = 0;
408 :
409 0 : if (!init_done) {
410 0 : size_t i = 0;
411 : const mbedtls_ecp_curve_info *curve_info;
412 :
413 0 : for (curve_info = mbedtls_ecp_curve_list();
414 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
415 0 : curve_info++) {
416 0 : ecp_supported_grp_id[i++] = curve_info->grp_id;
417 : }
418 0 : ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
419 :
420 0 : init_done = 1;
421 : }
422 :
423 0 : return ecp_supported_grp_id;
424 : }
425 :
426 : /*
427 : * Get the curve info for the internal identifier
428 : */
429 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
430 : {
431 : const mbedtls_ecp_curve_info *curve_info;
432 :
433 0 : for (curve_info = mbedtls_ecp_curve_list();
434 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
435 0 : curve_info++) {
436 0 : if (curve_info->grp_id == grp_id) {
437 0 : return curve_info;
438 : }
439 : }
440 :
441 0 : return NULL;
442 : }
443 :
444 : /*
445 : * Get the curve info from the TLS identifier
446 : */
447 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
448 : {
449 : const mbedtls_ecp_curve_info *curve_info;
450 :
451 0 : for (curve_info = mbedtls_ecp_curve_list();
452 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
453 0 : curve_info++) {
454 0 : if (curve_info->tls_id == tls_id) {
455 0 : return curve_info;
456 : }
457 : }
458 :
459 0 : return NULL;
460 : }
461 :
462 : /*
463 : * Get the curve info from the name
464 : */
465 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
466 : {
467 : const mbedtls_ecp_curve_info *curve_info;
468 :
469 0 : if (name == NULL) {
470 0 : return NULL;
471 : }
472 :
473 0 : for (curve_info = mbedtls_ecp_curve_list();
474 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
475 0 : curve_info++) {
476 0 : if (strcmp(curve_info->name, name) == 0) {
477 0 : return curve_info;
478 : }
479 : }
480 :
481 0 : return NULL;
482 : }
483 :
484 : /*
485 : * Get the type of a curve
486 : */
487 74114 : mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
488 : {
489 74114 : if (grp->G.X.p == NULL) {
490 0 : return MBEDTLS_ECP_TYPE_NONE;
491 : }
492 :
493 74114 : if (grp->G.Y.p == NULL) {
494 0 : return MBEDTLS_ECP_TYPE_MONTGOMERY;
495 : } else {
496 74114 : return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
497 : }
498 : }
499 :
500 : /*
501 : * Initialize (the components of) a point
502 : */
503 65218 : void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
504 : {
505 65218 : mbedtls_mpi_init(&pt->X);
506 65218 : mbedtls_mpi_init(&pt->Y);
507 65218 : mbedtls_mpi_init(&pt->Z);
508 65218 : }
509 :
510 : /*
511 : * Initialize (the components of) a group
512 : */
513 28194 : void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
514 : {
515 28194 : grp->id = MBEDTLS_ECP_DP_NONE;
516 28194 : mbedtls_mpi_init(&grp->P);
517 28194 : mbedtls_mpi_init(&grp->A);
518 28194 : mbedtls_mpi_init(&grp->B);
519 28194 : mbedtls_ecp_point_init(&grp->G);
520 28194 : mbedtls_mpi_init(&grp->N);
521 28194 : grp->pbits = 0;
522 28194 : grp->nbits = 0;
523 28194 : grp->h = 0;
524 28194 : grp->modp = NULL;
525 28194 : grp->t_pre = NULL;
526 28194 : grp->t_post = NULL;
527 28194 : grp->t_data = NULL;
528 28194 : grp->T = NULL;
529 28194 : grp->T_size = 0;
530 28194 : }
531 :
532 : /*
533 : * Initialize (the components of) a key pair
534 : */
535 12763 : void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
536 : {
537 12763 : mbedtls_ecp_group_init(&key->grp);
538 12763 : mbedtls_mpi_init(&key->d);
539 12763 : mbedtls_ecp_point_init(&key->Q);
540 12763 : }
541 :
542 : /*
543 : * Unallocate (the components of) a point
544 : */
545 50168 : void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
546 : {
547 50168 : if (pt == NULL) {
548 0 : return;
549 : }
550 :
551 50168 : mbedtls_mpi_free(&(pt->X));
552 50168 : mbedtls_mpi_free(&(pt->Y));
553 50168 : mbedtls_mpi_free(&(pt->Z));
554 : }
555 :
556 : /*
557 : * Check that the comb table (grp->T) is static initialized.
558 : */
559 29790 : static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
560 : {
561 : #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
562 29790 : return grp->T != NULL && grp->T_size == 0;
563 : #else
564 : (void) grp;
565 : return 0;
566 : #endif
567 : }
568 :
569 : /*
570 : * Unallocate (the components of) a group
571 : */
572 27974 : void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
573 : {
574 : size_t i;
575 :
576 27974 : if (grp == NULL) {
577 0 : return;
578 : }
579 :
580 27974 : if (grp->h != 1) {
581 14024 : mbedtls_mpi_free(&grp->A);
582 14024 : mbedtls_mpi_free(&grp->B);
583 14024 : mbedtls_ecp_point_free(&grp->G);
584 :
585 : #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
586 14024 : mbedtls_mpi_free(&grp->N);
587 14024 : mbedtls_mpi_free(&grp->P);
588 : #endif
589 : }
590 :
591 27974 : if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
592 0 : for (i = 0; i < grp->T_size; i++) {
593 0 : mbedtls_ecp_point_free(&grp->T[i]);
594 : }
595 0 : mbedtls_free(grp->T);
596 : }
597 :
598 27974 : mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
599 : }
600 :
601 : /*
602 : * Unallocate (the components of) a key pair
603 : */
604 12763 : void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
605 : {
606 12763 : if (key == NULL) {
607 0 : return;
608 : }
609 :
610 12763 : mbedtls_ecp_group_free(&key->grp);
611 12763 : mbedtls_mpi_free(&key->d);
612 12763 : mbedtls_ecp_point_free(&key->Q);
613 : }
614 :
615 : /*
616 : * Copy the contents of a point
617 : */
618 7397 : int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
619 : {
620 7397 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
621 7397 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
622 7397 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
623 7397 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
624 :
625 7397 : cleanup:
626 7397 : return ret;
627 : }
628 :
629 : /*
630 : * Copy the contents of a group object
631 : */
632 6 : int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
633 : {
634 6 : return mbedtls_ecp_group_load(dst, src->id);
635 : }
636 :
637 : /*
638 : * Set point to zero
639 : */
640 0 : int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
641 : {
642 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
643 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
644 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
645 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
646 :
647 0 : cleanup:
648 0 : return ret;
649 : }
650 :
651 : /*
652 : * Tell if a point is zero
653 : */
654 1575 : int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
655 : {
656 1575 : return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
657 : }
658 :
659 : /*
660 : * Compare two points lazily
661 : */
662 0 : int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
663 : const mbedtls_ecp_point *Q)
664 : {
665 0 : if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
666 0 : mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
667 0 : mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
668 0 : return 0;
669 : }
670 :
671 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
672 : }
673 :
674 : /*
675 : * Import a non-zero point from ASCII strings
676 : */
677 0 : int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
678 : const char *x, const char *y)
679 : {
680 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
681 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
682 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
683 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
684 :
685 0 : cleanup:
686 0 : return ret;
687 : }
688 :
689 : /*
690 : * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
691 : */
692 12 : int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
693 : const mbedtls_ecp_point *P,
694 : int format, size_t *olen,
695 : unsigned char *buf, size_t buflen)
696 : {
697 12 : int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
698 : size_t plen;
699 12 : if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
700 : format != MBEDTLS_ECP_PF_COMPRESSED) {
701 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
702 : }
703 :
704 12 : plen = mbedtls_mpi_size(&grp->P);
705 :
706 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
707 : (void) format; /* Montgomery curves always use the same point format */
708 12 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
709 0 : *olen = plen;
710 0 : if (buflen < *olen) {
711 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
712 : }
713 :
714 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
715 : }
716 : #endif
717 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
718 12 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
719 : /*
720 : * Common case: P == 0
721 : */
722 12 : if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
723 0 : if (buflen < 1) {
724 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
725 : }
726 :
727 0 : buf[0] = 0x00;
728 0 : *olen = 1;
729 :
730 0 : return 0;
731 : }
732 :
733 12 : if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
734 12 : *olen = 2 * plen + 1;
735 :
736 12 : if (buflen < *olen) {
737 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
738 : }
739 :
740 12 : buf[0] = 0x04;
741 12 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
742 12 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
743 0 : } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
744 0 : *olen = plen + 1;
745 :
746 0 : if (buflen < *olen) {
747 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
748 : }
749 :
750 0 : buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
751 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
752 : }
753 : }
754 : #endif
755 :
756 0 : cleanup:
757 12 : return ret;
758 : }
759 :
760 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
761 : static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
762 : const mbedtls_mpi *X,
763 : mbedtls_mpi *Y,
764 : int parity_bit);
765 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
766 :
767 : /*
768 : * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
769 : */
770 12757 : int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
771 : mbedtls_ecp_point *pt,
772 : const unsigned char *buf, size_t ilen)
773 : {
774 12757 : int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
775 : size_t plen;
776 12757 : if (ilen < 1) {
777 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
778 : }
779 :
780 12757 : plen = mbedtls_mpi_size(&grp->P);
781 :
782 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
783 12757 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
784 0 : if (plen != ilen) {
785 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
786 : }
787 :
788 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
789 0 : mbedtls_mpi_free(&pt->Y);
790 :
791 0 : if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
792 : /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
793 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
794 : }
795 :
796 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
797 : }
798 : #endif
799 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
800 12757 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
801 12757 : if (buf[0] == 0x00) {
802 0 : if (ilen == 1) {
803 0 : return mbedtls_ecp_set_zero(pt);
804 : } else {
805 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
806 : }
807 : }
808 :
809 12757 : if (ilen < 1 + plen) {
810 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
811 : }
812 :
813 12757 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
814 12757 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
815 :
816 12757 : if (buf[0] == 0x04) {
817 : /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
818 12757 : if (ilen != 1 + plen * 2) {
819 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
820 : }
821 12757 : return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
822 0 : } else if (buf[0] == 0x02 || buf[0] == 0x03) {
823 : /* format == MBEDTLS_ECP_PF_COMPRESSED */
824 0 : if (ilen != 1 + plen) {
825 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
826 : }
827 0 : return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
828 0 : (buf[0] & 1));
829 : } else {
830 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
831 : }
832 : }
833 : #endif
834 :
835 0 : cleanup:
836 0 : return ret;
837 : }
838 :
839 : /*
840 : * Import a point from a TLS ECPoint record (RFC 4492)
841 : * struct {
842 : * opaque point <1..2^8-1>;
843 : * } ECPoint;
844 : */
845 0 : int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
846 : mbedtls_ecp_point *pt,
847 : const unsigned char **buf, size_t buf_len)
848 : {
849 : unsigned char data_len;
850 : const unsigned char *buf_start;
851 : /*
852 : * We must have at least two bytes (1 for length, at least one for data)
853 : */
854 0 : if (buf_len < 2) {
855 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
856 : }
857 :
858 0 : data_len = *(*buf)++;
859 0 : if (data_len < 1 || data_len > buf_len - 1) {
860 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
861 : }
862 :
863 : /*
864 : * Save buffer start for read_binary and update buf
865 : */
866 0 : buf_start = *buf;
867 0 : *buf += data_len;
868 :
869 0 : return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
870 : }
871 :
872 : /*
873 : * Export a point as a TLS ECPoint record (RFC 4492)
874 : * struct {
875 : * opaque point <1..2^8-1>;
876 : * } ECPoint;
877 : */
878 0 : int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
879 : int format, size_t *olen,
880 : unsigned char *buf, size_t blen)
881 : {
882 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
883 0 : if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
884 : format != MBEDTLS_ECP_PF_COMPRESSED) {
885 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
886 : }
887 :
888 : /*
889 : * buffer length must be at least one, for our length byte
890 : */
891 0 : if (blen < 1) {
892 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
893 : }
894 :
895 0 : if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
896 : olen, buf + 1, blen - 1)) != 0) {
897 0 : return ret;
898 : }
899 :
900 : /*
901 : * write length to the first byte and update total length
902 : */
903 0 : buf[0] = (unsigned char) *olen;
904 0 : ++*olen;
905 :
906 0 : return 0;
907 : }
908 :
909 : /*
910 : * Set a group from an ECParameters record (RFC 4492)
911 : */
912 0 : int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
913 : const unsigned char **buf, size_t len)
914 : {
915 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
916 : mbedtls_ecp_group_id grp_id;
917 0 : if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
918 0 : return ret;
919 : }
920 :
921 0 : return mbedtls_ecp_group_load(grp, grp_id);
922 : }
923 :
924 : /*
925 : * Read a group id from an ECParameters record (RFC 4492) and convert it to
926 : * mbedtls_ecp_group_id.
927 : */
928 0 : int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
929 : const unsigned char **buf, size_t len)
930 : {
931 : uint16_t tls_id;
932 : const mbedtls_ecp_curve_info *curve_info;
933 : /*
934 : * We expect at least three bytes (see below)
935 : */
936 0 : if (len < 3) {
937 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
938 : }
939 :
940 : /*
941 : * First byte is curve_type; only named_curve is handled
942 : */
943 0 : if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
944 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
945 : }
946 :
947 : /*
948 : * Next two bytes are the namedcurve value
949 : */
950 0 : tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
951 0 : *buf += 2;
952 :
953 0 : if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
954 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
955 : }
956 :
957 0 : *grp = curve_info->grp_id;
958 :
959 0 : return 0;
960 : }
961 :
962 : /*
963 : * Write the ECParameters record corresponding to a group (RFC 4492)
964 : */
965 0 : int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
966 : unsigned char *buf, size_t blen)
967 : {
968 : const mbedtls_ecp_curve_info *curve_info;
969 0 : if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
970 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
971 : }
972 :
973 : /*
974 : * We are going to write 3 bytes (see below)
975 : */
976 0 : *olen = 3;
977 0 : if (blen < *olen) {
978 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
979 : }
980 :
981 : /*
982 : * First byte is curve_type, always named_curve
983 : */
984 0 : *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
985 :
986 : /*
987 : * Next two bytes are the namedcurve value
988 : */
989 0 : MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
990 :
991 0 : return 0;
992 : }
993 :
994 : /*
995 : * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
996 : * See the documentation of struct mbedtls_ecp_group.
997 : *
998 : * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
999 : */
1000 6437146 : static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1001 : {
1002 6437146 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003 :
1004 6437146 : if (grp->modp == NULL) {
1005 0 : return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1006 : }
1007 :
1008 : /* N->s < 0 is a much faster test, which fails only if N is 0 */
1009 6437146 : if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1010 6437146 : mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1011 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1012 : }
1013 :
1014 6437146 : MBEDTLS_MPI_CHK(grp->modp(N));
1015 :
1016 : /* N->s < 0 is a much faster test, which fails only if N is 0 */
1017 11644408 : while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1018 5207262 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1019 : }
1020 :
1021 7603745 : while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1022 : /* we known P, N and the result are positive */
1023 1166599 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1024 : }
1025 :
1026 6437146 : cleanup:
1027 6437146 : return ret;
1028 : }
1029 :
1030 : /*
1031 : * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032 : *
1033 : * In order to guarantee that, we need to ensure that operands of
1034 : * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035 : * bring the result back to this range.
1036 : *
1037 : * The following macros are shortcuts for doing that.
1038 : */
1039 :
1040 : /*
1041 : * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042 : */
1043 : #if defined(MBEDTLS_SELF_TEST)
1044 : #define INC_MUL_COUNT mul_count++;
1045 : #else
1046 : #define INC_MUL_COUNT
1047 : #endif
1048 :
1049 : #define MOD_MUL(N) \
1050 : do \
1051 : { \
1052 : MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1053 : INC_MUL_COUNT \
1054 : } while (0)
1055 :
1056 6437146 : static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1057 : mbedtls_mpi *X,
1058 : const mbedtls_mpi *A,
1059 : const mbedtls_mpi *B)
1060 : {
1061 6437146 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1062 6437146 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1063 6437146 : MOD_MUL(*X);
1064 6437146 : cleanup:
1065 6437146 : return ret;
1066 : }
1067 :
1068 : /*
1069 : * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1070 : * N->s < 0 is a very fast test, which fails only if N is 0
1071 : */
1072 : #define MOD_SUB(N) \
1073 : do { \
1074 : while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1075 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1076 : } while (0)
1077 :
1078 : MBEDTLS_MAYBE_UNUSED
1079 3734702 : static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1080 : mbedtls_mpi *X,
1081 : const mbedtls_mpi *A,
1082 : const mbedtls_mpi *B)
1083 : {
1084 3734702 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1085 3734702 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1086 5612595 : MOD_SUB(X);
1087 3734702 : cleanup:
1088 3734702 : return ret;
1089 : }
1090 :
1091 : /*
1092 : * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1093 : * We known P, N and the result are positive, so sub_abs is correct, and
1094 : * a bit faster.
1095 : */
1096 : #define MOD_ADD(N) \
1097 : while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1098 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1099 :
1100 513780 : static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1101 : mbedtls_mpi *X,
1102 : const mbedtls_mpi *A,
1103 : const mbedtls_mpi *B)
1104 : {
1105 513780 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1106 513780 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1107 761911 : MOD_ADD(X);
1108 513780 : cleanup:
1109 513780 : return ret;
1110 : }
1111 :
1112 : MBEDTLS_MAYBE_UNUSED
1113 497632 : static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1114 : mbedtls_mpi *X,
1115 : const mbedtls_mpi *A,
1116 : mbedtls_mpi_uint c)
1117 : {
1118 497632 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1119 :
1120 497632 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1121 986513 : MOD_ADD(X);
1122 497632 : cleanup:
1123 497632 : return ret;
1124 : }
1125 :
1126 : MBEDTLS_MAYBE_UNUSED
1127 16148 : static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1128 : mbedtls_mpi *X,
1129 : const mbedtls_mpi *A,
1130 : mbedtls_mpi_uint c)
1131 : {
1132 16148 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1133 :
1134 16148 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1135 16148 : MOD_SUB(X);
1136 16148 : cleanup:
1137 16148 : return ret;
1138 : }
1139 :
1140 : #define MPI_ECP_SUB_INT(X, A, c) \
1141 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1142 :
1143 : MBEDTLS_MAYBE_UNUSED
1144 2198285 : static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1145 : mbedtls_mpi *X,
1146 : size_t count)
1147 : {
1148 2198285 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1149 2198285 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1150 3275947 : MOD_ADD(X);
1151 2198285 : cleanup:
1152 2198285 : return ret;
1153 : }
1154 :
1155 : /*
1156 : * Macro wrappers around ECP modular arithmetic
1157 : *
1158 : * Currently, these wrappers are defined via the bignum module.
1159 : */
1160 :
1161 : #define MPI_ECP_ADD(X, A, B) \
1162 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1163 :
1164 : #define MPI_ECP_SUB(X, A, B) \
1165 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1166 :
1167 : #define MPI_ECP_MUL(X, A, B) \
1168 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1169 :
1170 : #define MPI_ECP_SQR(X, A) \
1171 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1172 :
1173 : #define MPI_ECP_MUL_INT(X, A, c) \
1174 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1175 :
1176 : #define MPI_ECP_INV(dst, src) \
1177 : MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, (dst), (src), &grp->P))
1178 :
1179 : #define MPI_ECP_MOV(X, A) \
1180 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1181 :
1182 : #define MPI_ECP_SHIFT_L(X, count) \
1183 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1184 :
1185 : #define MPI_ECP_LSET(X, c) \
1186 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1187 :
1188 : #define MPI_ECP_CMP_INT(X, c) \
1189 : mbedtls_mpi_cmp_int(X, c)
1190 :
1191 : #define MPI_ECP_CMP(X, Y) \
1192 : mbedtls_mpi_cmp_mpi(X, Y)
1193 :
1194 : /* Needs f_rng, p_rng to be defined. */
1195 : #define MPI_ECP_RAND(X) \
1196 : MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1197 :
1198 : /* Conditional negation
1199 : * Needs grp and a temporary MPI tmp to be defined. */
1200 : #define MPI_ECP_COND_NEG(X, cond) \
1201 : do \
1202 : { \
1203 : unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1204 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1205 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1206 : nonzero & cond)); \
1207 : } while (0)
1208 :
1209 : #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1210 :
1211 : #define MPI_ECP_VALID(X) \
1212 : ((X)->p != NULL)
1213 :
1214 : #define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1215 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1216 :
1217 : #define MPI_ECP_COND_SWAP(X, Y, cond) \
1218 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1219 :
1220 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1221 :
1222 : /*
1223 : * Computes the right-hand side of the Short Weierstrass equation
1224 : * RHS = X^3 + A X + B
1225 : */
1226 16148 : static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1227 : mbedtls_mpi *rhs,
1228 : const mbedtls_mpi *X)
1229 : {
1230 : int ret;
1231 :
1232 : /* Compute X^3 + A X + B as X (X^2 + A) + B */
1233 16148 : MPI_ECP_SQR(rhs, X);
1234 :
1235 : /* Special case for A = -3 */
1236 16148 : if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1237 16148 : MPI_ECP_SUB_INT(rhs, rhs, 3);
1238 : } else {
1239 0 : MPI_ECP_ADD(rhs, rhs, &grp->A);
1240 : }
1241 :
1242 16148 : MPI_ECP_MUL(rhs, rhs, X);
1243 16148 : MPI_ECP_ADD(rhs, rhs, &grp->B);
1244 :
1245 16148 : cleanup:
1246 16148 : return ret;
1247 : }
1248 :
1249 : /*
1250 : * Derive Y from X and a parity bit
1251 : */
1252 0 : static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1253 : const mbedtls_mpi *X,
1254 : mbedtls_mpi *Y,
1255 : int parity_bit)
1256 : {
1257 : /* w = y^2 = x^3 + ax + b
1258 : * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1259 : *
1260 : * Note: this method for extracting square root does not validate that w
1261 : * was indeed a square so this function will return garbage in Y if X
1262 : * does not correspond to a point on the curve.
1263 : */
1264 :
1265 : /* Check prerequisite p = 3 mod 4 */
1266 0 : if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1267 0 : mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1268 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1269 : }
1270 :
1271 : int ret;
1272 : mbedtls_mpi exp;
1273 0 : mbedtls_mpi_init(&exp);
1274 :
1275 : /* use Y to store intermediate result, actually w above */
1276 0 : MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1277 :
1278 : /* w = y^2 */ /* Y contains y^2 intermediate result */
1279 : /* exp = ((p+1)/4) */
1280 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1281 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1282 : /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1283 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1284 :
1285 : /* check parity bit match or else invert Y */
1286 : /* This quick inversion implementation is valid because Y != 0 for all
1287 : * Short Weierstrass curves supported by mbedtls, as each supported curve
1288 : * has an order that is a large prime, so each supported curve does not
1289 : * have any point of order 2, and a point with Y == 0 would be of order 2 */
1290 0 : if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1291 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1292 : }
1293 :
1294 0 : cleanup:
1295 :
1296 0 : mbedtls_mpi_free(&exp);
1297 0 : return ret;
1298 : }
1299 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1300 :
1301 : #if defined(MBEDTLS_ECP_C)
1302 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1303 : /*
1304 : * For curves in short Weierstrass form, we do all the internal operations in
1305 : * Jacobian coordinates.
1306 : *
1307 : * For multiplication, we'll use a comb method with countermeasures against
1308 : * SPA, hence timing attacks.
1309 : */
1310 :
1311 : /*
1312 : * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1313 : * Cost: 1N := 1I + 3M + 1S
1314 : */
1315 4891 : static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1316 : {
1317 4891 : if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1318 0 : return 0;
1319 : }
1320 :
1321 : #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1322 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1323 : return mbedtls_internal_ecp_normalize_jac(grp, pt);
1324 : }
1325 : #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1326 :
1327 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1328 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1329 : #else
1330 4891 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1331 : mbedtls_mpi T;
1332 4891 : mbedtls_mpi_init(&T);
1333 :
1334 4891 : MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1335 4891 : MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1336 4891 : MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1337 4891 : MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1338 4891 : MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1339 :
1340 4891 : MPI_ECP_LSET(&pt->Z, 1);
1341 :
1342 4891 : cleanup:
1343 :
1344 4891 : mbedtls_mpi_free(&T);
1345 :
1346 4891 : return ret;
1347 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1348 : }
1349 :
1350 : /*
1351 : * Normalize jacobian coordinates of an array of (pointers to) points,
1352 : * using Montgomery's trick to perform only one inversion mod P.
1353 : * (See for example Cohen's "A Course in Computational Algebraic Number
1354 : * Theory", Algorithm 10.3.4.)
1355 : *
1356 : * Warning: fails (returning an error) if one of the points is zero!
1357 : * This should never happen, see choice of w in ecp_mul_comb().
1358 : *
1359 : * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1360 : */
1361 3150 : static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1362 : mbedtls_ecp_point *T[], size_t T_size)
1363 : {
1364 3150 : if (T_size < 2) {
1365 0 : return ecp_normalize_jac(grp, *T);
1366 : }
1367 :
1368 : #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1369 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1370 : return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1371 : }
1372 : #endif
1373 :
1374 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1375 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1376 : #else
1377 3150 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1378 : size_t i;
1379 : mbedtls_mpi *c, t;
1380 :
1381 3150 : if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1382 0 : return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1383 : }
1384 :
1385 3150 : mbedtls_mpi_init(&t);
1386 :
1387 3150 : mpi_init_many(c, T_size);
1388 : /*
1389 : * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1390 : */
1391 3150 : MPI_ECP_MOV(&c[0], &T[0]->Z);
1392 15750 : for (i = 1; i < T_size; i++) {
1393 12600 : MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1394 : }
1395 :
1396 : /*
1397 : * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1398 : */
1399 3150 : MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1400 :
1401 15750 : for (i = T_size - 1;; i--) {
1402 : /* At the start of iteration i (note that i decrements), we have
1403 : * - c[j] = Z_0 * .... * Z_j for j < i,
1404 : * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1405 : *
1406 : * This is maintained via
1407 : * - c[i-1] <- c[i] * Z_i
1408 : *
1409 : * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1410 : * to do the actual normalization. For i==0, we already have
1411 : * c[0] = 1 / Z_0.
1412 : */
1413 :
1414 15750 : if (i > 0) {
1415 : /* Compute 1/Z_i and establish invariant for the next iteration. */
1416 12600 : MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1417 12600 : MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1418 : } else {
1419 3150 : MPI_ECP_MOV(&t, &c[0]);
1420 : }
1421 :
1422 : /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1423 15750 : MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1424 15750 : MPI_ECP_SQR(&t, &t);
1425 15750 : MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1426 15750 : MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1427 :
1428 : /*
1429 : * Post-precessing: reclaim some memory by shrinking coordinates
1430 : * - not storing Z (always 1)
1431 : * - shrinking other coordinates, but still keeping the same number of
1432 : * limbs as P, as otherwise it will too likely be regrown too fast.
1433 : */
1434 15750 : MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1435 15750 : MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1436 :
1437 15750 : MPI_ECP_LSET(&T[i]->Z, 1);
1438 :
1439 15750 : if (i == 0) {
1440 3150 : break;
1441 : }
1442 : }
1443 :
1444 3150 : cleanup:
1445 :
1446 3150 : mbedtls_mpi_free(&t);
1447 3150 : mpi_free_many(c, T_size);
1448 3150 : mbedtls_free(c);
1449 :
1450 3150 : return ret;
1451 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1452 : }
1453 :
1454 : /*
1455 : * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1456 : * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1457 : */
1458 202014 : static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1459 : mbedtls_ecp_point *Q,
1460 : unsigned char inv)
1461 : {
1462 202014 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1463 : mbedtls_mpi tmp;
1464 202014 : mbedtls_mpi_init(&tmp);
1465 :
1466 202014 : MPI_ECP_COND_NEG(&Q->Y, inv);
1467 :
1468 202014 : cleanup:
1469 202014 : mbedtls_mpi_free(&tmp);
1470 202014 : return ret;
1471 : }
1472 :
1473 : /*
1474 : * Point doubling R = 2 P, Jacobian coordinates
1475 : *
1476 : * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1477 : *
1478 : * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1479 : * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1480 : *
1481 : * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1482 : *
1483 : * Cost: 1D := 3M + 4S (A == 0)
1484 : * 4M + 4S (A == -3)
1485 : * 3M + 6S + 1a otherwise
1486 : */
1487 497632 : static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1488 : const mbedtls_ecp_point *P,
1489 : mbedtls_mpi tmp[4])
1490 : {
1491 : #if defined(MBEDTLS_SELF_TEST)
1492 497632 : dbl_count++;
1493 : #endif
1494 :
1495 : #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1496 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1497 : return mbedtls_internal_ecp_double_jac(grp, R, P);
1498 : }
1499 : #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1500 :
1501 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1502 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1503 : #else
1504 497632 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1505 :
1506 : /* Special case for A = -3 */
1507 497632 : if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1508 : /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1509 497632 : MPI_ECP_SQR(&tmp[1], &P->Z);
1510 497632 : MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1511 497632 : MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1512 497632 : MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1513 497632 : MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1514 : } else {
1515 : /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1516 0 : MPI_ECP_SQR(&tmp[1], &P->X);
1517 0 : MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1518 :
1519 : /* Optimize away for "koblitz" curves with A = 0 */
1520 0 : if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1521 : /* M += A.Z^4 */
1522 0 : MPI_ECP_SQR(&tmp[1], &P->Z);
1523 0 : MPI_ECP_SQR(&tmp[2], &tmp[1]);
1524 0 : MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1525 0 : MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1526 : }
1527 : }
1528 :
1529 : /* tmp[1] <- S = 4.X.Y^2 */
1530 497632 : MPI_ECP_SQR(&tmp[2], &P->Y);
1531 497632 : MPI_ECP_SHIFT_L(&tmp[2], 1);
1532 497632 : MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1533 497632 : MPI_ECP_SHIFT_L(&tmp[1], 1);
1534 :
1535 : /* tmp[3] <- U = 8.Y^4 */
1536 497632 : MPI_ECP_SQR(&tmp[3], &tmp[2]);
1537 497632 : MPI_ECP_SHIFT_L(&tmp[3], 1);
1538 :
1539 : /* tmp[2] <- T = M^2 - 2.S */
1540 497632 : MPI_ECP_SQR(&tmp[2], &tmp[0]);
1541 497632 : MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1542 497632 : MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1543 :
1544 : /* tmp[1] <- S = M(S - T) - U */
1545 497632 : MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1546 497632 : MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1547 497632 : MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1548 :
1549 : /* tmp[3] <- U = 2.Y.Z */
1550 497632 : MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1551 497632 : MPI_ECP_SHIFT_L(&tmp[3], 1);
1552 :
1553 : /* Store results */
1554 497632 : MPI_ECP_MOV(&R->X, &tmp[2]);
1555 497632 : MPI_ECP_MOV(&R->Y, &tmp[1]);
1556 497632 : MPI_ECP_MOV(&R->Z, &tmp[3]);
1557 :
1558 497632 : cleanup:
1559 :
1560 497632 : return ret;
1561 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1562 : }
1563 :
1564 : /*
1565 : * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1566 : *
1567 : * The coordinates of Q must be normalized (= affine),
1568 : * but those of P don't need to. R is not normalized.
1569 : *
1570 : * P,Q,R may alias, but only at the level of EC points: they must be either
1571 : * equal as pointers, or disjoint (including the coordinate data buffers).
1572 : * Fine-grained aliasing at the level of coordinates is not supported.
1573 : *
1574 : * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1575 : * None of these cases can happen as intermediate step in ecp_mul_comb():
1576 : * - at each step, P, Q and R are multiples of the base point, the factor
1577 : * being less than its order, so none of them is zero;
1578 : * - Q is an odd multiple of the base point, P an even multiple,
1579 : * due to the choice of precomputed points in the modified comb method.
1580 : * So branches for these cases do not leak secret information.
1581 : *
1582 : * Cost: 1A := 8M + 3S
1583 : */
1584 207757 : static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1585 : const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1586 : mbedtls_mpi tmp[4])
1587 : {
1588 : #if defined(MBEDTLS_SELF_TEST)
1589 207757 : add_count++;
1590 : #endif
1591 :
1592 : #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1593 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1594 : return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1595 : }
1596 : #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1597 :
1598 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1599 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1600 : #else
1601 207757 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1602 :
1603 : /* NOTE: Aliasing between input and output is allowed, so one has to make
1604 : * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1605 : * longer read from. */
1606 207757 : mbedtls_mpi * const X = &R->X;
1607 207757 : mbedtls_mpi * const Y = &R->Y;
1608 207757 : mbedtls_mpi * const Z = &R->Z;
1609 :
1610 207757 : if (!MPI_ECP_VALID(&Q->Z)) {
1611 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1612 : }
1613 :
1614 : /*
1615 : * Trivial cases: P == 0 or Q == 0 (case 1)
1616 : */
1617 207757 : if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1618 0 : return mbedtls_ecp_copy(R, Q);
1619 : }
1620 :
1621 207757 : if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1622 0 : return mbedtls_ecp_copy(R, P);
1623 : }
1624 :
1625 : /*
1626 : * Make sure Q coordinates are normalized
1627 : */
1628 207757 : if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1629 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1630 : }
1631 :
1632 207757 : MPI_ECP_SQR(&tmp[0], &P->Z);
1633 207757 : MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1634 207757 : MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1635 207757 : MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1636 207757 : MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1637 207757 : MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1638 :
1639 : /* Special cases (2) and (3) */
1640 207757 : if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1641 0 : if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1642 0 : ret = ecp_double_jac(grp, R, P, tmp);
1643 0 : goto cleanup;
1644 : } else {
1645 0 : ret = mbedtls_ecp_set_zero(R);
1646 0 : goto cleanup;
1647 : }
1648 : }
1649 :
1650 : /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1651 207757 : MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1652 207757 : MPI_ECP_SQR(&tmp[2], &tmp[0]);
1653 207757 : MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1654 207757 : MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1655 :
1656 207757 : MPI_ECP_MOV(&tmp[0], &tmp[2]);
1657 207757 : MPI_ECP_SHIFT_L(&tmp[0], 1);
1658 :
1659 : /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1660 207757 : MPI_ECP_SQR(X, &tmp[1]);
1661 207757 : MPI_ECP_SUB(X, X, &tmp[0]);
1662 207757 : MPI_ECP_SUB(X, X, &tmp[3]);
1663 207757 : MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1664 207757 : MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1665 207757 : MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1666 : /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1667 207757 : MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1668 :
1669 207757 : cleanup:
1670 :
1671 207757 : return ret;
1672 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1673 : }
1674 :
1675 : /*
1676 : * Randomize jacobian coordinates:
1677 : * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1678 : * This is sort of the reverse operation of ecp_normalize_jac().
1679 : *
1680 : * This countermeasure was first suggested in [2].
1681 : */
1682 391 : static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1683 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1684 : {
1685 : #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1686 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1687 : return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1688 : }
1689 : #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1690 :
1691 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1692 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1693 : #else
1694 391 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1695 : mbedtls_mpi l;
1696 :
1697 391 : mbedtls_mpi_init(&l);
1698 :
1699 : /* Generate l such that 1 < l < p */
1700 391 : MPI_ECP_RAND(&l);
1701 :
1702 : /* Z' = l * Z */
1703 391 : MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1704 :
1705 : /* Y' = l * Y */
1706 391 : MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1707 :
1708 : /* X' = l^2 * X */
1709 391 : MPI_ECP_SQR(&l, &l);
1710 391 : MPI_ECP_MUL(&pt->X, &pt->X, &l);
1711 :
1712 : /* Y'' = l^2 * Y' = l^3 * Y */
1713 391 : MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1714 :
1715 391 : cleanup:
1716 391 : mbedtls_mpi_free(&l);
1717 :
1718 391 : if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1719 0 : ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1720 : }
1721 391 : return ret;
1722 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1723 : }
1724 :
1725 : /*
1726 : * Check and define parameters used by the comb method (see below for details)
1727 : */
1728 : #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1729 : #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1730 : #endif
1731 :
1732 : /* d = ceil( n / w ) */
1733 : #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1734 :
1735 : /* number of precomputed points */
1736 : #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1737 :
1738 : /*
1739 : * Compute the representation of m that will be used with our comb method.
1740 : *
1741 : * The basic comb method is described in GECC 3.44 for example. We use a
1742 : * modified version that provides resistance to SPA by avoiding zero
1743 : * digits in the representation as in [3]. We modify the method further by
1744 : * requiring that all K_i be odd, which has the small cost that our
1745 : * representation uses one more K_i, due to carries, but saves on the size of
1746 : * the precomputed table.
1747 : *
1748 : * Summary of the comb method and its modifications:
1749 : *
1750 : * - The goal is to compute m*P for some w*d-bit integer m.
1751 : *
1752 : * - The basic comb method splits m into the w-bit integers
1753 : * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1754 : * index has residue i modulo d, and computes m * P as
1755 : * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1756 : * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1757 : *
1758 : * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1759 : * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1760 : * thereby successively converting it into a form where all summands
1761 : * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1762 : *
1763 : * - More generally, even if x[i+1] != 0, we can first transform the sum as
1764 : * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1765 : * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1766 : * Performing and iterating this procedure for those x[i] that are even
1767 : * (keeping track of carry), we can transform the original sum into one of the form
1768 : * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1769 : * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1770 : * which is why we are only computing half of it in the first place in
1771 : * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1772 : *
1773 : * - For the sake of compactness, only the seven low-order bits of x[i]
1774 : * are used to represent its absolute value (K_i in the paper), and the msb
1775 : * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1776 : * if s_i == -1;
1777 : *
1778 : * Calling conventions:
1779 : * - x is an array of size d + 1
1780 : * - w is the size, ie number of teeth, of the comb, and must be between
1781 : * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1782 : * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1783 : * (the result will be incorrect if these assumptions are not satisfied)
1784 : */
1785 3391 : static void ecp_comb_recode_core(unsigned char x[], size_t d,
1786 : unsigned char w, const mbedtls_mpi *m)
1787 : {
1788 : size_t i, j;
1789 : unsigned char c, cc, adjust;
1790 :
1791 3391 : memset(x, 0, d+1);
1792 :
1793 : /* First get the classical comb values (except for x_d = 0) */
1794 198623 : for (i = 0; i < d; i++) {
1795 1070592 : for (j = 0; j < w; j++) {
1796 875360 : x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1797 : }
1798 : }
1799 :
1800 : /* Now make sure x_1 .. x_d are odd */
1801 3391 : c = 0;
1802 198623 : for (i = 1; i <= d; i++) {
1803 : /* Add carry and update it */
1804 195232 : cc = x[i] & c;
1805 195232 : x[i] = x[i] ^ c;
1806 195232 : c = cc;
1807 :
1808 : /* Adjust if needed, avoiding branches */
1809 195232 : adjust = 1 - (x[i] & 0x01);
1810 195232 : c |= x[i] & (x[i-1] * adjust);
1811 195232 : x[i] = x[i] ^ (x[i-1] * adjust);
1812 195232 : x[i-1] |= adjust << 7;
1813 : }
1814 3391 : }
1815 :
1816 : /*
1817 : * Precompute points for the adapted comb method
1818 : *
1819 : * Assumption: T must be able to hold 2^{w - 1} elements.
1820 : *
1821 : * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1822 : * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1823 : *
1824 : * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1825 : *
1826 : * Note: Even comb values (those where P would be omitted from the
1827 : * sum defining T[i] above) are not needed in our adaption
1828 : * the comb method. See ecp_comb_recode_core().
1829 : *
1830 : * This function currently works in four steps:
1831 : * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1832 : * (2) [norm_dbl] Normalization of coordinates of these T[i]
1833 : * (3) [add] Computation of all T[i]
1834 : * (4) [norm_add] Normalization of all T[i]
1835 : *
1836 : * Step 1 can be interrupted but not the others; together with the final
1837 : * coordinate normalization they are the largest steps done at once, depending
1838 : * on the window size. Here are operation counts for P-256:
1839 : *
1840 : * step (2) (3) (4)
1841 : * w = 5 142 165 208
1842 : * w = 4 136 77 160
1843 : * w = 3 130 33 136
1844 : * w = 2 124 11 124
1845 : *
1846 : * So if ECC operations are blocking for too long even with a low max_ops
1847 : * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1848 : * to minimize maximum blocking time.
1849 : */
1850 1575 : static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1851 : mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1852 : unsigned char w, size_t d,
1853 : mbedtls_ecp_restart_ctx *rs_ctx)
1854 : {
1855 1575 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1856 : unsigned char i;
1857 1575 : size_t j = 0;
1858 1575 : const unsigned char T_size = 1U << (w - 1);
1859 1575 : mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1860 :
1861 : mbedtls_mpi tmp[4];
1862 :
1863 1575 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1864 :
1865 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1866 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1867 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1868 0 : goto dbl;
1869 : }
1870 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1871 0 : goto norm_dbl;
1872 : }
1873 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1874 0 : goto add;
1875 : }
1876 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1877 0 : goto norm_add;
1878 : }
1879 : }
1880 : #else
1881 : (void) rs_ctx;
1882 : #endif
1883 :
1884 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1885 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1886 0 : rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1887 :
1888 : /* initial state for the loop */
1889 0 : rs_ctx->rsm->i = 0;
1890 : }
1891 :
1892 1575 : dbl:
1893 : #endif
1894 : /*
1895 : * Set T[0] = P and
1896 : * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1897 : */
1898 1575 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1899 :
1900 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1901 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1902 0 : j = rs_ctx->rsm->i;
1903 : } else
1904 : #endif
1905 1575 : j = 0;
1906 :
1907 303975 : for (; j < d * (w - 1); j++) {
1908 302400 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1909 :
1910 302400 : i = 1U << (j / d);
1911 302400 : cur = T + i;
1912 :
1913 302400 : if (j % d == 0) {
1914 4725 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1915 : }
1916 :
1917 302400 : MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1918 : }
1919 :
1920 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1921 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1922 0 : rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1923 : }
1924 :
1925 1575 : norm_dbl:
1926 : #endif
1927 : /*
1928 : * Normalize current elements in T to allow them to be used in
1929 : * ecp_add_mixed() below, which requires one normalized input.
1930 : *
1931 : * As T has holes, use an auxiliary array of pointers to elements in T.
1932 : *
1933 : */
1934 1575 : j = 0;
1935 6300 : for (i = 1; i < T_size; i <<= 1) {
1936 4725 : TT[j++] = T + i;
1937 : }
1938 :
1939 1575 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1940 :
1941 1575 : MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1942 :
1943 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1944 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1945 0 : rs_ctx->rsm->state = ecp_rsm_pre_add;
1946 : }
1947 :
1948 1575 : add:
1949 : #endif
1950 : /*
1951 : * Compute the remaining ones using the minimal number of additions
1952 : * Be careful to update T[2^l] only after using it!
1953 : */
1954 1575 : MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1955 :
1956 6300 : for (i = 1; i < T_size; i <<= 1) {
1957 4725 : j = i;
1958 15750 : while (j--) {
1959 11025 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1960 : }
1961 : }
1962 :
1963 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1964 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1965 0 : rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1966 : }
1967 :
1968 1575 : norm_add:
1969 : #endif
1970 : /*
1971 : * Normalize final elements in T. Even though there are no holes now, we
1972 : * still need the auxiliary array for homogeneity with the previous
1973 : * call. Also, skip T[0] which is already normalised, being a copy of P.
1974 : */
1975 12600 : for (j = 0; j + 1 < T_size; j++) {
1976 11025 : TT[j] = T + j + 1;
1977 : }
1978 :
1979 1575 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1980 :
1981 1575 : MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1982 :
1983 : /* Free Z coordinate (=1 after normalization) to save RAM.
1984 : * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1985 : * since from this point onwards, they are only accessed indirectly
1986 : * via the getter function ecp_select_comb() which does set the
1987 : * target's Z coordinate to 1. */
1988 14175 : for (i = 0; i < T_size; i++) {
1989 12600 : mbedtls_mpi_free(&T[i].Z);
1990 : }
1991 :
1992 1575 : cleanup:
1993 :
1994 1575 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1995 :
1996 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1997 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1998 : ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1999 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2000 0 : rs_ctx->rsm->i = j;
2001 : }
2002 : }
2003 : #endif
2004 :
2005 1575 : return ret;
2006 : }
2007 :
2008 : /*
2009 : * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2010 : *
2011 : * See ecp_comb_recode_core() for background
2012 : */
2013 198623 : static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2014 : const mbedtls_ecp_point T[], unsigned char T_size,
2015 : unsigned char i)
2016 : {
2017 198623 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2018 : unsigned char ii, j;
2019 :
2020 : /* Ignore the "sign" bit and scale down */
2021 198623 : ii = (i & 0x7Fu) >> 1;
2022 :
2023 : /* Read the whole table to thwart cache-based timing attacks */
2024 2557591 : for (j = 0; j < T_size; j++) {
2025 2358968 : MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2026 2358968 : MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2027 : }
2028 :
2029 : /* Safely invert result if i is "negative" */
2030 198623 : MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2031 :
2032 198623 : MPI_ECP_LSET(&R->Z, 1);
2033 :
2034 198623 : cleanup:
2035 198623 : return ret;
2036 : }
2037 :
2038 : /*
2039 : * Core multiplication algorithm for the (modified) comb method.
2040 : * This part is actually common with the basic comb method (GECC 3.44)
2041 : *
2042 : * Cost: d A + d D + 1 R
2043 : */
2044 3391 : static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2045 : const mbedtls_ecp_point T[], unsigned char T_size,
2046 : const unsigned char x[], size_t d,
2047 : int (*f_rng)(void *, unsigned char *, size_t),
2048 : void *p_rng,
2049 : mbedtls_ecp_restart_ctx *rs_ctx)
2050 : {
2051 3391 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2052 : mbedtls_ecp_point Txi;
2053 : mbedtls_mpi tmp[4];
2054 : size_t i;
2055 :
2056 3391 : mbedtls_ecp_point_init(&Txi);
2057 3391 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2058 :
2059 : #if !defined(MBEDTLS_ECP_RESTARTABLE)
2060 : (void) rs_ctx;
2061 : #endif
2062 :
2063 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2064 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2065 0 : rs_ctx->rsm->state != ecp_rsm_comb_core) {
2066 0 : rs_ctx->rsm->i = 0;
2067 0 : rs_ctx->rsm->state = ecp_rsm_comb_core;
2068 : }
2069 :
2070 : /* new 'if' instead of nested for the sake of the 'else' branch */
2071 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2072 : /* restore current index (R already pointing to rs_ctx->rsm->R) */
2073 0 : i = rs_ctx->rsm->i;
2074 : } else
2075 : #endif
2076 : {
2077 : /* Start with a non-zero point and randomize its coordinates */
2078 3391 : i = d;
2079 3391 : MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2080 3391 : if (f_rng != 0) {
2081 391 : MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2082 : }
2083 : }
2084 :
2085 198623 : while (i != 0) {
2086 195232 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2087 195232 : --i;
2088 :
2089 195232 : MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2090 195232 : MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2091 195232 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2092 : }
2093 :
2094 3391 : cleanup:
2095 :
2096 3391 : mbedtls_ecp_point_free(&Txi);
2097 3391 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2098 :
2099 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2100 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2101 : ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2102 0 : rs_ctx->rsm->i = i;
2103 : /* no need to save R, already pointing to rs_ctx->rsm->R */
2104 : }
2105 : #endif
2106 :
2107 3391 : return ret;
2108 : }
2109 :
2110 : /*
2111 : * Recode the scalar to get constant-time comb multiplication
2112 : *
2113 : * As the actual scalar recoding needs an odd scalar as a starting point,
2114 : * this wrapper ensures that by replacing m by N - m if necessary, and
2115 : * informs the caller that the result of multiplication will be negated.
2116 : *
2117 : * This works because we only support large prime order for Short Weierstrass
2118 : * curves, so N is always odd hence either m or N - m is.
2119 : *
2120 : * See ecp_comb_recode_core() for background.
2121 : */
2122 3391 : static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2123 : const mbedtls_mpi *m,
2124 : unsigned char k[COMB_MAX_D + 1],
2125 : size_t d,
2126 : unsigned char w,
2127 : unsigned char *parity_trick)
2128 : {
2129 3391 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2130 : mbedtls_mpi M, mm;
2131 :
2132 3391 : mbedtls_mpi_init(&M);
2133 3391 : mbedtls_mpi_init(&mm);
2134 :
2135 : /* N is always odd (see above), just make extra sure */
2136 3391 : if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2137 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2138 : }
2139 :
2140 : /* do we need the parity trick? */
2141 3391 : *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2142 :
2143 : /* execute parity fix in constant time */
2144 3391 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2145 3391 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2146 3391 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2147 :
2148 : /* actual scalar recoding */
2149 3391 : ecp_comb_recode_core(k, d, w, &M);
2150 :
2151 3391 : cleanup:
2152 3391 : mbedtls_mpi_free(&mm);
2153 3391 : mbedtls_mpi_free(&M);
2154 :
2155 3391 : return ret;
2156 : }
2157 :
2158 : /*
2159 : * Perform comb multiplication (for short Weierstrass curves)
2160 : * once the auxiliary table has been pre-computed.
2161 : *
2162 : * Scalar recoding may use a parity trick that makes us compute -m * P,
2163 : * if that is the case we'll need to recover m * P at the end.
2164 : */
2165 3391 : static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2166 : mbedtls_ecp_point *R,
2167 : const mbedtls_mpi *m,
2168 : const mbedtls_ecp_point *T,
2169 : unsigned char T_size,
2170 : unsigned char w,
2171 : size_t d,
2172 : int (*f_rng)(void *, unsigned char *, size_t),
2173 : void *p_rng,
2174 : mbedtls_ecp_restart_ctx *rs_ctx)
2175 : {
2176 3391 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2177 : unsigned char parity_trick;
2178 : unsigned char k[COMB_MAX_D + 1];
2179 3391 : mbedtls_ecp_point *RR = R;
2180 :
2181 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2182 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2183 0 : RR = &rs_ctx->rsm->R;
2184 :
2185 0 : if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2186 0 : goto final_norm;
2187 : }
2188 : }
2189 : #endif
2190 :
2191 3391 : MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2192 : &parity_trick));
2193 3391 : MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2194 : f_rng, p_rng, rs_ctx));
2195 3391 : MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2196 :
2197 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2198 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2199 0 : rs_ctx->rsm->state = ecp_rsm_final_norm;
2200 : }
2201 :
2202 3391 : final_norm:
2203 3391 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2204 : #endif
2205 3391 : MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2206 :
2207 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2208 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2209 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2210 : }
2211 : #endif
2212 :
2213 3391 : cleanup:
2214 3391 : return ret;
2215 : }
2216 :
2217 : /*
2218 : * Pick window size based on curve size and whether we optimize for base point
2219 : */
2220 3391 : static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2221 : unsigned char p_eq_g)
2222 : {
2223 : unsigned char w;
2224 :
2225 : /*
2226 : * Minimize the number of multiplications, that is minimize
2227 : * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2228 : * (see costs of the various parts, with 1S = 1M)
2229 : */
2230 3391 : w = grp->nbits >= 384 ? 5 : 4;
2231 :
2232 : /*
2233 : * If P == G, pre-compute a bit more, since this may be re-used later.
2234 : * Just adding one avoids upping the cost of the first mul too much,
2235 : * and the memory cost too.
2236 : */
2237 3391 : if (p_eq_g) {
2238 1816 : w++;
2239 : }
2240 :
2241 : /*
2242 : * If static comb table may not be used (!p_eq_g) or static comb table does
2243 : * not exists, make sure w is within bounds.
2244 : * (The last test is useful only for very small curves in the test suite.)
2245 : *
2246 : * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2247 : * static comb table, because the size of static comb table is fixed when
2248 : * it is generated.
2249 : */
2250 : #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2251 3391 : if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2252 0 : w = MBEDTLS_ECP_WINDOW_SIZE;
2253 : }
2254 : #endif
2255 3391 : if (w >= grp->nbits) {
2256 0 : w = 2;
2257 : }
2258 :
2259 3391 : return w;
2260 : }
2261 :
2262 : /*
2263 : * Multiplication using the comb method - for curves in short Weierstrass form
2264 : *
2265 : * This function is mainly responsible for administrative work:
2266 : * - managing the restart context if enabled
2267 : * - managing the table of precomputed points (passed between the below two
2268 : * functions): allocation, computation, ownership transfer, freeing.
2269 : *
2270 : * It delegates the actual arithmetic work to:
2271 : * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2272 : *
2273 : * See comments on ecp_comb_recode_core() regarding the computation strategy.
2274 : */
2275 3391 : static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2276 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2277 : int (*f_rng)(void *, unsigned char *, size_t),
2278 : void *p_rng,
2279 : mbedtls_ecp_restart_ctx *rs_ctx)
2280 : {
2281 3391 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2282 : unsigned char w, p_eq_g, i;
2283 : size_t d;
2284 3391 : unsigned char T_size = 0, T_ok = 0;
2285 3391 : mbedtls_ecp_point *T = NULL;
2286 :
2287 3391 : ECP_RS_ENTER(rsm);
2288 :
2289 : /* Is P the base point ? */
2290 : #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2291 5207 : p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2292 1816 : MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2293 : #else
2294 : p_eq_g = 0;
2295 : #endif
2296 :
2297 : /* Pick window size and deduce related sizes */
2298 3391 : w = ecp_pick_window_size(grp, p_eq_g);
2299 3391 : T_size = 1U << (w - 1);
2300 3391 : d = (grp->nbits + w - 1) / w;
2301 :
2302 : /* Pre-computed table: do we have it already for the base point? */
2303 3391 : if (p_eq_g && grp->T != NULL) {
2304 : /* second pointer to the same table, will be deleted on exit */
2305 1816 : T = grp->T;
2306 1816 : T_ok = 1;
2307 : } else
2308 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2309 : /* Pre-computed table: do we have one in progress? complete? */
2310 1575 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2311 : /* transfer ownership of T from rsm to local function */
2312 0 : T = rs_ctx->rsm->T;
2313 0 : rs_ctx->rsm->T = NULL;
2314 0 : rs_ctx->rsm->T_size = 0;
2315 :
2316 : /* This effectively jumps to the call to mul_comb_after_precomp() */
2317 0 : T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2318 : } else
2319 : #endif
2320 : /* Allocate table if we didn't have any */
2321 : {
2322 1575 : T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2323 1575 : if (T == NULL) {
2324 0 : ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2325 0 : goto cleanup;
2326 : }
2327 :
2328 14175 : for (i = 0; i < T_size; i++) {
2329 12600 : mbedtls_ecp_point_init(&T[i]);
2330 : }
2331 :
2332 1575 : T_ok = 0;
2333 : }
2334 :
2335 : /* Compute table (or finish computing it) if not done already */
2336 3391 : if (!T_ok) {
2337 1575 : MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2338 :
2339 1575 : if (p_eq_g) {
2340 : /* almost transfer ownership of T to the group, but keep a copy of
2341 : * the pointer to use for calling the next function more easily */
2342 0 : grp->T = T;
2343 0 : grp->T_size = T_size;
2344 : }
2345 : }
2346 :
2347 : /* Actual comb multiplication using precomputed points */
2348 3391 : MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2349 : T, T_size, w, d,
2350 : f_rng, p_rng, rs_ctx));
2351 :
2352 3391 : cleanup:
2353 :
2354 : /* does T belong to the group? */
2355 3391 : if (T == grp->T) {
2356 1816 : T = NULL;
2357 : }
2358 :
2359 : /* does T belong to the restart context? */
2360 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2361 3391 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2362 : /* transfer ownership of T from local function to rsm */
2363 0 : rs_ctx->rsm->T_size = T_size;
2364 0 : rs_ctx->rsm->T = T;
2365 0 : T = NULL;
2366 : }
2367 : #endif
2368 :
2369 : /* did T belong to us? then let's destroy it! */
2370 3391 : if (T != NULL) {
2371 14175 : for (i = 0; i < T_size; i++) {
2372 12600 : mbedtls_ecp_point_free(&T[i]);
2373 : }
2374 1575 : mbedtls_free(T);
2375 : }
2376 :
2377 : /* prevent caller from using invalid value */
2378 3391 : int should_free_R = (ret != 0);
2379 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2380 : /* don't free R while in progress in case R == P */
2381 3391 : if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2382 0 : should_free_R = 0;
2383 : }
2384 : #endif
2385 3391 : if (should_free_R) {
2386 0 : mbedtls_ecp_point_free(R);
2387 : }
2388 :
2389 3391 : ECP_RS_LEAVE(rsm);
2390 :
2391 3391 : return ret;
2392 : }
2393 :
2394 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2395 :
2396 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2397 : /*
2398 : * For Montgomery curves, we do all the internal arithmetic in projective
2399 : * coordinates. Import/export of points uses only the x coordinates, which is
2400 : * internally represented as X / Z.
2401 : *
2402 : * For scalar multiplication, we'll use a Montgomery ladder.
2403 : */
2404 :
2405 : /*
2406 : * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2407 : * Cost: 1M + 1I
2408 : */
2409 0 : static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2410 : {
2411 : #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2412 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2413 : return mbedtls_internal_ecp_normalize_mxz(grp, P);
2414 : }
2415 : #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2416 :
2417 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2418 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2419 : #else
2420 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2421 0 : MPI_ECP_INV(&P->Z, &P->Z);
2422 0 : MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2423 0 : MPI_ECP_LSET(&P->Z, 1);
2424 :
2425 0 : cleanup:
2426 0 : return ret;
2427 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2428 : }
2429 :
2430 : /*
2431 : * Randomize projective x/z coordinates:
2432 : * (X, Z) -> (l X, l Z) for random l
2433 : * This is sort of the reverse operation of ecp_normalize_mxz().
2434 : *
2435 : * This countermeasure was first suggested in [2].
2436 : * Cost: 2M
2437 : */
2438 0 : static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2439 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2440 : {
2441 : #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2442 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2443 : return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2444 : }
2445 : #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2446 :
2447 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2448 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2449 : #else
2450 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2451 : mbedtls_mpi l;
2452 0 : mbedtls_mpi_init(&l);
2453 :
2454 : /* Generate l such that 1 < l < p */
2455 0 : MPI_ECP_RAND(&l);
2456 :
2457 0 : MPI_ECP_MUL(&P->X, &P->X, &l);
2458 0 : MPI_ECP_MUL(&P->Z, &P->Z, &l);
2459 :
2460 0 : cleanup:
2461 0 : mbedtls_mpi_free(&l);
2462 :
2463 0 : if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2464 0 : ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2465 : }
2466 0 : return ret;
2467 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2468 : }
2469 :
2470 : /*
2471 : * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2472 : * for Montgomery curves in x/z coordinates.
2473 : *
2474 : * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2475 : * with
2476 : * d = X1
2477 : * P = (X2, Z2)
2478 : * Q = (X3, Z3)
2479 : * R = (X4, Z4)
2480 : * S = (X5, Z5)
2481 : * and eliminating temporary variables tO, ..., t4.
2482 : *
2483 : * Cost: 5M + 4S
2484 : */
2485 0 : static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2486 : mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2487 : const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2488 : const mbedtls_mpi *d,
2489 : mbedtls_mpi T[4])
2490 : {
2491 : #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2492 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2493 : return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2494 : }
2495 : #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2496 :
2497 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2498 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2499 : #else
2500 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2501 :
2502 0 : MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2503 0 : MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2504 0 : MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2505 0 : MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2506 0 : MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2507 0 : MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2508 0 : MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2509 0 : MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2510 0 : MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2511 0 : MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2512 0 : MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2513 0 : MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2514 0 : MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2515 0 : MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2516 0 : MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2517 0 : MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2518 0 : MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2519 0 : MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2520 :
2521 0 : cleanup:
2522 :
2523 0 : return ret;
2524 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2525 : }
2526 :
2527 : /*
2528 : * Multiplication with Montgomery ladder in x/z coordinates,
2529 : * for curves in Montgomery form
2530 : */
2531 0 : static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2532 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2533 : int (*f_rng)(void *, unsigned char *, size_t),
2534 : void *p_rng)
2535 : {
2536 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2537 : size_t i;
2538 : unsigned char b;
2539 : mbedtls_ecp_point RP;
2540 : mbedtls_mpi PX;
2541 : mbedtls_mpi tmp[4];
2542 0 : mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2543 :
2544 0 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2545 :
2546 0 : if (f_rng == NULL) {
2547 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2548 : }
2549 :
2550 : /* Save PX and read from P before writing to R, in case P == R */
2551 0 : MPI_ECP_MOV(&PX, &P->X);
2552 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2553 :
2554 : /* Set R to zero in modified x/z coordinates */
2555 0 : MPI_ECP_LSET(&R->X, 1);
2556 0 : MPI_ECP_LSET(&R->Z, 0);
2557 0 : mbedtls_mpi_free(&R->Y);
2558 :
2559 : /* RP.X might be slightly larger than P, so reduce it */
2560 0 : MOD_ADD(&RP.X);
2561 :
2562 : /* Randomize coordinates of the starting point */
2563 0 : MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2564 :
2565 : /* Loop invariant: R = result so far, RP = R + P */
2566 0 : i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2567 0 : while (i-- > 0) {
2568 0 : b = mbedtls_mpi_get_bit(m, i);
2569 : /*
2570 : * if (b) R = 2R + P else R = 2R,
2571 : * which is:
2572 : * if (b) double_add( RP, R, RP, R )
2573 : * else double_add( R, RP, R, RP )
2574 : * but using safe conditional swaps to avoid leaks
2575 : */
2576 0 : MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2577 0 : MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2578 0 : MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2579 0 : MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2580 0 : MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2581 : }
2582 :
2583 0 : MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2584 :
2585 0 : cleanup:
2586 0 : mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2587 :
2588 0 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2589 0 : return ret;
2590 : }
2591 :
2592 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2593 :
2594 : /*
2595 : * Restartable multiplication R = m * P
2596 : *
2597 : * This internal function can be called without an RNG in case where we know
2598 : * the inputs are not sensitive.
2599 : */
2600 3391 : static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2601 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2602 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2603 : mbedtls_ecp_restart_ctx *rs_ctx)
2604 : {
2605 3391 : int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2606 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2607 : char is_grp_capable = 0;
2608 : #endif
2609 :
2610 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2611 : /* reset ops count for this call if top-level */
2612 3391 : if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2613 0 : rs_ctx->ops_done = 0;
2614 : }
2615 : #else
2616 : (void) rs_ctx;
2617 : #endif
2618 :
2619 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2620 : if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2621 : MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2622 : }
2623 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2624 :
2625 3391 : int restarting = 0;
2626 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2627 3391 : restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2628 : #endif
2629 : /* skip argument check when restarting */
2630 3391 : if (!restarting) {
2631 : /* check_privkey is free */
2632 3391 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2633 :
2634 : /* Common sanity checks */
2635 3391 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2636 3391 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2637 : }
2638 :
2639 3391 : ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2640 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2641 3391 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2642 0 : MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2643 : }
2644 : #endif
2645 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2646 3391 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2647 3391 : MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2648 : }
2649 : #endif
2650 :
2651 3391 : cleanup:
2652 :
2653 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2654 : if (is_grp_capable) {
2655 : mbedtls_internal_ecp_free(grp);
2656 : }
2657 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2658 :
2659 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2660 3391 : if (rs_ctx != NULL) {
2661 0 : rs_ctx->depth--;
2662 : }
2663 : #endif
2664 :
2665 3391 : return ret;
2666 : }
2667 :
2668 : /*
2669 : * Restartable multiplication R = m * P
2670 : */
2671 391 : int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2672 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2673 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2674 : mbedtls_ecp_restart_ctx *rs_ctx)
2675 : {
2676 391 : if (f_rng == NULL) {
2677 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2678 : }
2679 :
2680 391 : return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2681 : }
2682 :
2683 : /*
2684 : * Multiplication R = m * P
2685 : */
2686 0 : int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2687 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2688 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2689 : {
2690 0 : return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2691 : }
2692 : #endif /* MBEDTLS_ECP_C */
2693 :
2694 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2695 : /*
2696 : * Check that an affine point is valid as a public key,
2697 : * short weierstrass curves (SEC1 3.2.3.1)
2698 : */
2699 16148 : static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2700 : {
2701 16148 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2702 : mbedtls_mpi YY, RHS;
2703 :
2704 : /* pt coordinates must be normalized for our checks */
2705 32296 : if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2706 32296 : mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2707 32296 : mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2708 16148 : mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2709 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
2710 : }
2711 :
2712 16148 : mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2713 :
2714 : /*
2715 : * YY = Y^2
2716 : * RHS = X^3 + A X + B
2717 : */
2718 16148 : MPI_ECP_SQR(&YY, &pt->Y);
2719 16148 : MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2720 :
2721 16148 : if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2722 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2723 : }
2724 :
2725 16148 : cleanup:
2726 :
2727 16148 : mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2728 :
2729 16148 : return ret;
2730 : }
2731 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2732 :
2733 : #if defined(MBEDTLS_ECP_C)
2734 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2735 : /*
2736 : * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2737 : * NOT constant-time - ONLY for short Weierstrass!
2738 : */
2739 3000 : static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2740 : mbedtls_ecp_point *R,
2741 : const mbedtls_mpi *m,
2742 : const mbedtls_ecp_point *P,
2743 : mbedtls_ecp_restart_ctx *rs_ctx)
2744 : {
2745 3000 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2746 : mbedtls_mpi tmp;
2747 3000 : mbedtls_mpi_init(&tmp);
2748 :
2749 3000 : if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2750 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2751 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2752 3000 : } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2753 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2754 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2755 3000 : } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2756 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2757 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2758 0 : MPI_ECP_NEG(&R->Y);
2759 : } else {
2760 3000 : MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2761 : NULL, NULL, rs_ctx));
2762 : }
2763 :
2764 3000 : cleanup:
2765 3000 : mbedtls_mpi_free(&tmp);
2766 :
2767 3000 : return ret;
2768 : }
2769 :
2770 : /*
2771 : * Restartable linear combination
2772 : * NOT constant-time
2773 : */
2774 1500 : int mbedtls_ecp_muladd_restartable(
2775 : mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2776 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2777 : const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2778 : mbedtls_ecp_restart_ctx *rs_ctx)
2779 : {
2780 1500 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2781 : mbedtls_ecp_point mP;
2782 1500 : mbedtls_ecp_point *pmP = &mP;
2783 1500 : mbedtls_ecp_point *pR = R;
2784 : mbedtls_mpi tmp[4];
2785 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2786 : char is_grp_capable = 0;
2787 : #endif
2788 1500 : if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2789 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2790 : }
2791 :
2792 1500 : mbedtls_ecp_point_init(&mP);
2793 1500 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2794 :
2795 1500 : ECP_RS_ENTER(ma);
2796 :
2797 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2798 1500 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2799 : /* redirect intermediate results to restart context */
2800 0 : pmP = &rs_ctx->ma->mP;
2801 0 : pR = &rs_ctx->ma->R;
2802 :
2803 : /* jump to next operation */
2804 0 : if (rs_ctx->ma->state == ecp_rsma_mul2) {
2805 0 : goto mul2;
2806 : }
2807 0 : if (rs_ctx->ma->state == ecp_rsma_add) {
2808 0 : goto add;
2809 : }
2810 0 : if (rs_ctx->ma->state == ecp_rsma_norm) {
2811 0 : goto norm;
2812 : }
2813 : }
2814 : #endif /* MBEDTLS_ECP_RESTARTABLE */
2815 :
2816 1500 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2817 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2818 1500 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2819 0 : rs_ctx->ma->state = ecp_rsma_mul2;
2820 : }
2821 :
2822 1500 : mul2:
2823 : #endif
2824 1500 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2825 :
2826 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2827 : if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2828 : MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2829 : }
2830 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2831 :
2832 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2833 1500 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2834 0 : rs_ctx->ma->state = ecp_rsma_add;
2835 : }
2836 :
2837 1500 : add:
2838 : #endif
2839 1500 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2840 1500 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2841 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2842 1500 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2843 0 : rs_ctx->ma->state = ecp_rsma_norm;
2844 : }
2845 :
2846 1500 : norm:
2847 : #endif
2848 1500 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2849 1500 : MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2850 :
2851 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2852 1500 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2853 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2854 : }
2855 : #endif
2856 :
2857 1500 : cleanup:
2858 :
2859 1500 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2860 :
2861 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2862 : if (is_grp_capable) {
2863 : mbedtls_internal_ecp_free(grp);
2864 : }
2865 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2866 :
2867 1500 : mbedtls_ecp_point_free(&mP);
2868 :
2869 1500 : ECP_RS_LEAVE(ma);
2870 :
2871 1500 : return ret;
2872 : }
2873 :
2874 : /*
2875 : * Linear combination
2876 : * NOT constant-time
2877 : */
2878 0 : int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2879 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2880 : const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2881 : {
2882 0 : return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2883 : }
2884 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2885 : #endif /* MBEDTLS_ECP_C */
2886 :
2887 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2888 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2889 : #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2890 : #define ECP_MPI_INIT_ARRAY(x) \
2891 : ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2892 : /*
2893 : * Constants for the two points other than 0, 1, -1 (mod p) in
2894 : * https://cr.yp.to/ecdh.html#validate
2895 : * See ecp_check_pubkey_x25519().
2896 : */
2897 : static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2898 : MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2899 : MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2900 : MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2901 : MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2902 : };
2903 : static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2904 : MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2905 : MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2906 : MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2907 : MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2908 : };
2909 : static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2910 : x25519_bad_point_1);
2911 : static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2912 : x25519_bad_point_2);
2913 : #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2914 :
2915 : /*
2916 : * Check that the input point is not one of the low-order points.
2917 : * This is recommended by the "May the Fourth" paper:
2918 : * https://eprint.iacr.org/2017/806.pdf
2919 : * Those points are never sent by an honest peer.
2920 : */
2921 0 : static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2922 : const mbedtls_ecp_group_id grp_id)
2923 : {
2924 : int ret;
2925 : mbedtls_mpi XmP;
2926 :
2927 0 : mbedtls_mpi_init(&XmP);
2928 :
2929 : /* Reduce X mod P so that we only need to check values less than P.
2930 : * We know X < 2^256 so we can proceed by subtraction. */
2931 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2932 0 : while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2933 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2934 : }
2935 :
2936 : /* Check against the known bad values that are less than P. For Curve448
2937 : * these are 0, 1 and -1. For Curve25519 we check the values less than P
2938 : * from the following list: https://cr.yp.to/ecdh.html#validate */
2939 0 : if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2940 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2941 0 : goto cleanup;
2942 : }
2943 :
2944 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2945 0 : if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2946 0 : if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2947 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2948 0 : goto cleanup;
2949 : }
2950 :
2951 0 : if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2952 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2953 0 : goto cleanup;
2954 : }
2955 : }
2956 : #else
2957 : (void) grp_id;
2958 : #endif
2959 :
2960 : /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2961 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2962 0 : if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2963 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2964 0 : goto cleanup;
2965 : }
2966 :
2967 0 : ret = 0;
2968 :
2969 0 : cleanup:
2970 0 : mbedtls_mpi_free(&XmP);
2971 :
2972 0 : return ret;
2973 : }
2974 :
2975 : /*
2976 : * Check validity of a public key for Montgomery curves with x-only schemes
2977 : */
2978 0 : static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2979 : {
2980 : /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2981 : /* Allow any public value, if it's too big then we'll just reduce it mod p
2982 : * (RFC 7748 sec. 5 para. 3). */
2983 0 : if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
2984 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
2985 : }
2986 :
2987 : /* Implicit in all standards (as they don't consider negative numbers):
2988 : * X must be non-negative. This is normally ensured by the way it's
2989 : * encoded for transmission, but let's be extra sure. */
2990 0 : if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
2991 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
2992 : }
2993 :
2994 0 : return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
2995 : }
2996 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2997 :
2998 : /*
2999 : * Check that a point is valid as a public key
3000 : */
3001 16148 : int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3002 : const mbedtls_ecp_point *pt)
3003 : {
3004 : /* Must use affine coordinates */
3005 16148 : if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3006 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3007 : }
3008 :
3009 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3010 16148 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3011 0 : return ecp_check_pubkey_mx(grp, pt);
3012 : }
3013 : #endif
3014 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3015 16148 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3016 16148 : return ecp_check_pubkey_sw(grp, pt);
3017 : }
3018 : #endif
3019 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3020 : }
3021 :
3022 : /*
3023 : * Check that an mbedtls_mpi is valid as a private key
3024 : */
3025 3537 : int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3026 : const mbedtls_mpi *d)
3027 : {
3028 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3029 3537 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3030 : /* see RFC 7748 sec. 5 para. 5 */
3031 0 : if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3032 0 : mbedtls_mpi_get_bit(d, 1) != 0 ||
3033 0 : mbedtls_mpi_bitlen(d) != grp->nbits + 1) { /* mbedtls_mpi_bitlen is one-based! */
3034 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3035 : }
3036 :
3037 : /* see [Curve25519] page 5 */
3038 0 : if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3039 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3040 : }
3041 :
3042 0 : return 0;
3043 : }
3044 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3045 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3046 3537 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3047 : /* see SEC1 3.2 */
3048 7074 : if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3049 3537 : mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3050 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3051 : } else {
3052 3537 : return 0;
3053 : }
3054 : }
3055 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3056 :
3057 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3058 : }
3059 :
3060 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3061 : MBEDTLS_STATIC_TESTABLE
3062 0 : int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3063 : mbedtls_mpi *d,
3064 : int (*f_rng)(void *, unsigned char *, size_t),
3065 : void *p_rng)
3066 : {
3067 0 : int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3068 0 : size_t n_random_bytes = high_bit / 8 + 1;
3069 :
3070 : /* [Curve25519] page 5 */
3071 : /* Generate a (high_bit+1)-bit random number by generating just enough
3072 : * random bytes, then shifting out extra bits from the top (necessary
3073 : * when (high_bit+1) is not a multiple of 8). */
3074 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3075 : f_rng, p_rng));
3076 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3077 :
3078 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3079 :
3080 : /* Make sure the last two bits are unset for Curve448, three bits for
3081 : Curve25519 */
3082 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3083 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3084 0 : if (high_bit == 254) {
3085 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3086 : }
3087 :
3088 0 : cleanup:
3089 0 : return ret;
3090 : }
3091 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3092 :
3093 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3094 316 : static int mbedtls_ecp_gen_privkey_sw(
3095 : const mbedtls_mpi *N, mbedtls_mpi *d,
3096 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3097 : {
3098 316 : int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3099 316 : switch (ret) {
3100 0 : case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3101 0 : return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3102 316 : default:
3103 316 : return ret;
3104 : }
3105 : }
3106 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3107 :
3108 : /*
3109 : * Generate a private key
3110 : */
3111 316 : int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3112 : mbedtls_mpi *d,
3113 : int (*f_rng)(void *, unsigned char *, size_t),
3114 : void *p_rng)
3115 : {
3116 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3117 316 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3118 0 : return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3119 : }
3120 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3121 :
3122 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3123 316 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3124 316 : return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3125 : }
3126 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3127 :
3128 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3129 : }
3130 :
3131 : #if defined(MBEDTLS_ECP_C)
3132 : /*
3133 : * Generate a keypair with configurable base point
3134 : */
3135 0 : int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3136 : const mbedtls_ecp_point *G,
3137 : mbedtls_mpi *d, mbedtls_ecp_point *Q,
3138 : int (*f_rng)(void *, unsigned char *, size_t),
3139 : void *p_rng)
3140 : {
3141 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3142 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3143 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3144 :
3145 0 : cleanup:
3146 0 : return ret;
3147 : }
3148 :
3149 : /*
3150 : * Generate key pair, wrapper for conventional base point
3151 : */
3152 0 : int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3153 : mbedtls_mpi *d, mbedtls_ecp_point *Q,
3154 : int (*f_rng)(void *, unsigned char *, size_t),
3155 : void *p_rng)
3156 : {
3157 0 : return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3158 : }
3159 :
3160 : /*
3161 : * Generate a keypair, prettier wrapper
3162 : */
3163 0 : int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3164 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3165 : {
3166 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3167 0 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3168 0 : return ret;
3169 : }
3170 :
3171 0 : return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3172 : }
3173 : #endif /* MBEDTLS_ECP_C */
3174 :
3175 0 : int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3176 : mbedtls_ecp_keypair *key,
3177 : const mbedtls_ecp_point *Q)
3178 : {
3179 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3180 :
3181 0 : if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3182 : /* Group not set yet */
3183 0 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3184 0 : return ret;
3185 : }
3186 0 : } else if (key->grp.id != grp_id) {
3187 : /* Group mismatch */
3188 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3189 : }
3190 0 : return mbedtls_ecp_copy(&key->Q, Q);
3191 : }
3192 :
3193 :
3194 : #define ECP_CURVE25519_KEY_SIZE 32
3195 : #define ECP_CURVE448_KEY_SIZE 56
3196 : /*
3197 : * Read a private key.
3198 : */
3199 146 : int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3200 : const unsigned char *buf, size_t buflen)
3201 : {
3202 146 : int ret = 0;
3203 :
3204 146 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3205 0 : return ret;
3206 : }
3207 :
3208 146 : ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3209 :
3210 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3211 146 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3212 : /*
3213 : * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3214 : */
3215 0 : if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3216 0 : if (buflen != ECP_CURVE25519_KEY_SIZE) {
3217 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3218 : }
3219 :
3220 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3221 :
3222 : /* Set the three least significant bits to 0 */
3223 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3224 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3225 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3226 :
3227 : /* Set the most significant bit to 0 */
3228 0 : MBEDTLS_MPI_CHK(
3229 : mbedtls_mpi_set_bit(&key->d,
3230 : ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3231 : );
3232 :
3233 : /* Set the second most significant bit to 1 */
3234 0 : MBEDTLS_MPI_CHK(
3235 : mbedtls_mpi_set_bit(&key->d,
3236 : ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3237 : );
3238 0 : } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3239 0 : if (buflen != ECP_CURVE448_KEY_SIZE) {
3240 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3241 : }
3242 :
3243 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3244 :
3245 : /* Set the two least significant bits to 0 */
3246 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3247 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3248 :
3249 : /* Set the most significant bit to 1 */
3250 0 : MBEDTLS_MPI_CHK(
3251 : mbedtls_mpi_set_bit(&key->d,
3252 : ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3253 : );
3254 : }
3255 : }
3256 : #endif
3257 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3258 146 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3259 146 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3260 : }
3261 : #endif
3262 :
3263 146 : if (ret == 0) {
3264 146 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3265 : }
3266 :
3267 146 : cleanup:
3268 :
3269 146 : if (ret != 0) {
3270 0 : mbedtls_mpi_free(&key->d);
3271 : }
3272 :
3273 146 : return ret;
3274 : }
3275 :
3276 : /*
3277 : * Write a private key.
3278 : */
3279 : #if !defined MBEDTLS_DEPRECATED_REMOVED
3280 0 : int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3281 : unsigned char *buf, size_t buflen)
3282 : {
3283 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3284 :
3285 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3286 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3287 0 : if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3288 0 : if (buflen < ECP_CURVE25519_KEY_SIZE) {
3289 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3290 : }
3291 :
3292 0 : } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3293 0 : if (buflen < ECP_CURVE448_KEY_SIZE) {
3294 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3295 : }
3296 : }
3297 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3298 : }
3299 : #endif
3300 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3301 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3302 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3303 : }
3304 :
3305 : #endif
3306 0 : cleanup:
3307 :
3308 0 : return ret;
3309 : }
3310 : #endif /* MBEDTLS_DEPRECATED_REMOVED */
3311 :
3312 0 : int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3313 : size_t *olen, unsigned char *buf, size_t buflen)
3314 : {
3315 0 : size_t len = (key->grp.nbits + 7) / 8;
3316 0 : if (len > buflen) {
3317 : /* For robustness, ensure *olen <= buflen even on error. */
3318 0 : *olen = 0;
3319 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3320 : }
3321 0 : *olen = len;
3322 :
3323 : /* Private key not set */
3324 0 : if (key->d.n == 0) {
3325 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3326 : }
3327 :
3328 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3329 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3330 0 : return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3331 : }
3332 : #endif
3333 :
3334 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3335 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3336 0 : return mbedtls_mpi_write_binary(&key->d, buf, len);
3337 : }
3338 : #endif
3339 :
3340 : /* Private key set but no recognized curve type? This shouldn't happen. */
3341 0 : return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3342 : }
3343 :
3344 : /*
3345 : * Write a public key.
3346 : */
3347 0 : int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3348 : int format, size_t *olen,
3349 : unsigned char *buf, size_t buflen)
3350 : {
3351 0 : return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3352 : format, olen, buf, buflen);
3353 : }
3354 :
3355 :
3356 : #if defined(MBEDTLS_ECP_C)
3357 : /*
3358 : * Check a public-private key pair
3359 : */
3360 0 : int mbedtls_ecp_check_pub_priv(
3361 : const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3362 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3363 : {
3364 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3365 : mbedtls_ecp_point Q;
3366 : mbedtls_ecp_group grp;
3367 0 : if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3368 0 : pub->grp.id != prv->grp.id ||
3369 0 : mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3370 0 : mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3371 0 : mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3372 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3373 : }
3374 :
3375 0 : mbedtls_ecp_point_init(&Q);
3376 0 : mbedtls_ecp_group_init(&grp);
3377 :
3378 : /* mbedtls_ecp_mul() needs a non-const group... */
3379 0 : mbedtls_ecp_group_copy(&grp, &prv->grp);
3380 :
3381 : /* Also checks d is valid */
3382 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3383 :
3384 0 : if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3385 0 : mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3386 0 : mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3387 0 : ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3388 0 : goto cleanup;
3389 : }
3390 :
3391 0 : cleanup:
3392 0 : mbedtls_ecp_point_free(&Q);
3393 0 : mbedtls_ecp_group_free(&grp);
3394 :
3395 0 : return ret;
3396 : }
3397 :
3398 0 : int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3399 : int (*f_rng)(void *, unsigned char *, size_t),
3400 : void *p_rng)
3401 : {
3402 0 : return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3403 : f_rng, p_rng);
3404 : }
3405 : #endif /* MBEDTLS_ECP_C */
3406 :
3407 0 : mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3408 : const mbedtls_ecp_keypair *key)
3409 : {
3410 0 : return key->grp.id;
3411 : }
3412 :
3413 : /*
3414 : * Export generic key-pair parameters.
3415 : */
3416 0 : int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3417 : mbedtls_mpi *d, mbedtls_ecp_point *Q)
3418 : {
3419 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3420 :
3421 0 : if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3422 0 : return ret;
3423 : }
3424 :
3425 0 : if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3426 0 : return ret;
3427 : }
3428 :
3429 0 : if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3430 0 : return ret;
3431 : }
3432 :
3433 0 : return 0;
3434 : }
3435 :
3436 : #if defined(MBEDTLS_SELF_TEST)
3437 :
3438 : #if defined(MBEDTLS_ECP_C)
3439 : /*
3440 : * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3441 : *
3442 : * This is the linear congruential generator from numerical recipes,
3443 : * except we only use the low byte as the output. See
3444 : * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3445 : */
3446 0 : static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3447 : {
3448 : static uint32_t state = 42;
3449 :
3450 : (void) ctx;
3451 :
3452 0 : for (size_t i = 0; i < len; i++) {
3453 0 : state = state * 1664525u + 1013904223u;
3454 0 : out[i] = (unsigned char) state;
3455 : }
3456 :
3457 0 : return 0;
3458 : }
3459 :
3460 : /* Adjust the exponent to be a valid private point for the specified curve.
3461 : * This is sometimes necessary because we use a single set of exponents
3462 : * for all curves but the validity of values depends on the curve. */
3463 0 : static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3464 : mbedtls_mpi *m)
3465 : {
3466 0 : int ret = 0;
3467 0 : switch (grp->id) {
3468 : /* If Curve25519 is available, then that's what we use for the
3469 : * Montgomery test, so we don't need the adjustment code. */
3470 : #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3471 : #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3472 : case MBEDTLS_ECP_DP_CURVE448:
3473 : /* Move highest bit from 254 to N-1. Setting bit N-1 is
3474 : * necessary to enforce the highest-bit-set constraint. */
3475 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3476 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3477 : /* Copy second-highest bit from 253 to N-2. This is not
3478 : * necessary but improves the test variety a bit. */
3479 : MBEDTLS_MPI_CHK(
3480 : mbedtls_mpi_set_bit(m, grp->nbits - 1,
3481 : mbedtls_mpi_get_bit(m, 253)));
3482 : break;
3483 : #endif
3484 : #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3485 : default:
3486 : /* Non-Montgomery curves and Curve25519 need no adjustment. */
3487 : (void) grp;
3488 : (void) m;
3489 0 : goto cleanup;
3490 : }
3491 0 : cleanup:
3492 0 : return ret;
3493 : }
3494 :
3495 : /* Calculate R = m.P for each m in exponents. Check that the number of
3496 : * basic operations doesn't depend on the value of m. */
3497 0 : static int self_test_point(int verbose,
3498 : mbedtls_ecp_group *grp,
3499 : mbedtls_ecp_point *R,
3500 : mbedtls_mpi *m,
3501 : const mbedtls_ecp_point *P,
3502 : const char *const *exponents,
3503 : size_t n_exponents)
3504 : {
3505 0 : int ret = 0;
3506 0 : size_t i = 0;
3507 : unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3508 0 : add_count = 0;
3509 0 : dbl_count = 0;
3510 0 : mul_count = 0;
3511 :
3512 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3513 0 : MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3514 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3515 :
3516 0 : for (i = 1; i < n_exponents; i++) {
3517 0 : add_c_prev = add_count;
3518 0 : dbl_c_prev = dbl_count;
3519 0 : mul_c_prev = mul_count;
3520 0 : add_count = 0;
3521 0 : dbl_count = 0;
3522 0 : mul_count = 0;
3523 :
3524 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3525 0 : MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3526 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3527 :
3528 0 : if (add_count != add_c_prev ||
3529 0 : dbl_count != dbl_c_prev ||
3530 0 : mul_count != mul_c_prev) {
3531 0 : ret = 1;
3532 0 : break;
3533 : }
3534 : }
3535 :
3536 0 : cleanup:
3537 0 : if (verbose != 0) {
3538 0 : if (ret != 0) {
3539 0 : mbedtls_printf("failed (%u)\n", (unsigned int) i);
3540 : } else {
3541 0 : mbedtls_printf("passed\n");
3542 : }
3543 : }
3544 0 : return ret;
3545 : }
3546 : #endif /* MBEDTLS_ECP_C */
3547 :
3548 : /*
3549 : * Checkup routine
3550 : */
3551 0 : int mbedtls_ecp_self_test(int verbose)
3552 : {
3553 : #if defined(MBEDTLS_ECP_C)
3554 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3555 : mbedtls_ecp_group grp;
3556 : mbedtls_ecp_point R, P;
3557 : mbedtls_mpi m;
3558 :
3559 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3560 : /* Exponents especially adapted for secp192k1, which has the lowest
3561 : * order n of all supported curves (secp192r1 is in a slightly larger
3562 : * field but the order of its base point is slightly smaller). */
3563 0 : const char *sw_exponents[] =
3564 : {
3565 : "000000000000000000000000000000000000000000000001", /* one */
3566 : "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3567 : "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3568 : "400000000000000000000000000000000000000000000000", /* one and zeros */
3569 : "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3570 : "555555555555555555555555555555555555555555555555", /* 101010... */
3571 : };
3572 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3573 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3574 0 : const char *m_exponents[] =
3575 : {
3576 : /* Valid private values for Curve25519. In a build with Curve448
3577 : * but not Curve25519, they will be adjusted in
3578 : * self_test_adjust_exponent(). */
3579 : "4000000000000000000000000000000000000000000000000000000000000000",
3580 : "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3581 : "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3582 : "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3583 : "5555555555555555555555555555555555555555555555555555555555555550",
3584 : "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3585 : };
3586 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3587 :
3588 0 : mbedtls_ecp_group_init(&grp);
3589 0 : mbedtls_ecp_point_init(&R);
3590 0 : mbedtls_ecp_point_init(&P);
3591 0 : mbedtls_mpi_init(&m);
3592 :
3593 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3594 : /* Use secp192r1 if available, or any available curve */
3595 : #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3596 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3597 : #else
3598 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3599 : #endif
3600 :
3601 0 : if (verbose != 0) {
3602 0 : mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3603 : }
3604 : /* Do a dummy multiplication first to trigger precomputation */
3605 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3606 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3607 0 : ret = self_test_point(verbose,
3608 : &grp, &R, &m, &grp.G,
3609 : sw_exponents,
3610 : sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3611 0 : if (ret != 0) {
3612 0 : goto cleanup;
3613 : }
3614 :
3615 0 : if (verbose != 0) {
3616 0 : mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3617 : }
3618 : /* We computed P = 2G last time, use it */
3619 0 : ret = self_test_point(verbose,
3620 : &grp, &R, &m, &P,
3621 : sw_exponents,
3622 : sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3623 0 : if (ret != 0) {
3624 0 : goto cleanup;
3625 : }
3626 :
3627 0 : mbedtls_ecp_group_free(&grp);
3628 0 : mbedtls_ecp_point_free(&R);
3629 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3630 :
3631 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3632 0 : if (verbose != 0) {
3633 0 : mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3634 : }
3635 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3636 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3637 : #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3638 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3639 : #else
3640 : #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3641 : #endif
3642 0 : ret = self_test_point(verbose,
3643 : &grp, &R, &m, &grp.G,
3644 : m_exponents,
3645 : sizeof(m_exponents) / sizeof(m_exponents[0]));
3646 0 : if (ret != 0) {
3647 0 : goto cleanup;
3648 : }
3649 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3650 :
3651 0 : cleanup:
3652 :
3653 0 : if (ret < 0 && verbose != 0) {
3654 0 : mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3655 : }
3656 :
3657 0 : mbedtls_ecp_group_free(&grp);
3658 0 : mbedtls_ecp_point_free(&R);
3659 0 : mbedtls_ecp_point_free(&P);
3660 0 : mbedtls_mpi_free(&m);
3661 :
3662 0 : if (verbose != 0) {
3663 0 : mbedtls_printf("\n");
3664 : }
3665 :
3666 0 : return ret;
3667 : #else /* MBEDTLS_ECP_C */
3668 : (void) verbose;
3669 : return 0;
3670 : #endif /* MBEDTLS_ECP_C */
3671 : }
3672 :
3673 : #endif /* MBEDTLS_SELF_TEST */
3674 :
3675 : #endif /* !MBEDTLS_ECP_ALT */
3676 :
3677 : #endif /* MBEDTLS_ECP_LIGHT */
|