Line data Source code
1 : /*
2 : * Elliptic curves over GF(p): generic functions
3 : *
4 : * Copyright The Mbed TLS Contributors
5 : * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 : */
7 :
8 : /*
9 : * References:
10 : *
11 : * SEC1 https://www.secg.org/sec1-v2.pdf
12 : * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13 : * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14 : * RFC 4492 for the related TLS structures and constants
15 : * - https://www.rfc-editor.org/rfc/rfc4492
16 : * RFC 7748 for the Curve448 and Curve25519 curve definitions
17 : * - https://www.rfc-editor.org/rfc/rfc7748
18 : *
19 : * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20 : *
21 : * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22 : * for elliptic curve cryptosystems. In : Cryptographic Hardware and
23 : * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24 : * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25 : *
26 : * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27 : * render ECC resistant against Side Channel Attacks. IACR Cryptology
28 : * ePrint Archive, 2004, vol. 2004, p. 342.
29 : * <http://eprint.iacr.org/2004/342.pdf>
30 : */
31 :
32 : #include "common.h"
33 :
34 : /**
35 : * \brief Function level alternative implementation.
36 : *
37 : * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38 : * replace certain functions in this module. The alternative implementations are
39 : * typically hardware accelerators and need to activate the hardware before the
40 : * computation starts and deactivate it after it finishes. The
41 : * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42 : * this purpose.
43 : *
44 : * To preserve the correct functionality the following conditions must hold:
45 : *
46 : * - The alternative implementation must be activated by
47 : * mbedtls_internal_ecp_init() before any of the replaceable functions is
48 : * called.
49 : * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50 : * implementation is activated.
51 : * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52 : * implementation is activated.
53 : * - Public functions must not return while the alternative implementation is
54 : * activated.
55 : * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56 : * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57 : * \endcode ensures that the alternative implementation supports the current
58 : * group.
59 : */
60 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
61 : #endif
62 :
63 : #if defined(MBEDTLS_ECP_LIGHT)
64 :
65 : #include "mbedtls/ecp.h"
66 : #include "mbedtls/threading.h"
67 : #include "mbedtls/platform_util.h"
68 : #include "mbedtls/error.h"
69 :
70 : #include "bn_mul.h"
71 : #include "ecp_invasive.h"
72 :
73 : #include <string.h>
74 :
75 : #if !defined(MBEDTLS_ECP_ALT)
76 :
77 : #include "mbedtls/platform.h"
78 :
79 : #include "ecp_internal_alt.h"
80 :
81 : #if defined(MBEDTLS_SELF_TEST)
82 : /*
83 : * Counts of point addition and doubling, and field multiplications.
84 : * Used to test resistance of point multiplication to simple timing attacks.
85 : */
86 : #if defined(MBEDTLS_ECP_C)
87 : static unsigned long add_count, dbl_count;
88 : #endif /* MBEDTLS_ECP_C */
89 : static unsigned long mul_count;
90 : #endif
91 :
92 : #if defined(MBEDTLS_ECP_RESTARTABLE)
93 : /*
94 : * Maximum number of "basic operations" to be done in a row.
95 : *
96 : * Default value 0 means that ECC operations will not yield.
97 : * Note that regardless of the value of ecp_max_ops, always at
98 : * least one step is performed before yielding.
99 : *
100 : * Setting ecp_max_ops=1 can be suitable for testing purposes
101 : * as it will interrupt computation at all possible points.
102 : */
103 : static unsigned ecp_max_ops = 0;
104 :
105 : /*
106 : * Set ecp_max_ops
107 : */
108 0 : void mbedtls_ecp_set_max_ops(unsigned max_ops)
109 : {
110 0 : ecp_max_ops = max_ops;
111 0 : }
112 :
113 : /*
114 : * Check if restart is enabled
115 : */
116 6424 : int mbedtls_ecp_restart_is_enabled(void)
117 : {
118 6424 : return ecp_max_ops != 0;
119 : }
120 :
121 : /*
122 : * Restart sub-context for ecp_mul_comb()
123 : */
124 : struct mbedtls_ecp_restart_mul {
125 : mbedtls_ecp_point R; /* current intermediate result */
126 : size_t i; /* current index in various loops, 0 outside */
127 : mbedtls_ecp_point *T; /* table for precomputed points */
128 : unsigned char T_size; /* number of points in table T */
129 : enum { /* what were we doing last time we returned? */
130 : ecp_rsm_init = 0, /* nothing so far, dummy initial state */
131 : ecp_rsm_pre_dbl, /* precompute 2^n multiples */
132 : ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
133 : ecp_rsm_pre_add, /* precompute remaining points by adding */
134 : ecp_rsm_pre_norm_add, /* normalize all precomputed points */
135 : ecp_rsm_comb_core, /* ecp_mul_comb_core() */
136 : ecp_rsm_final_norm, /* do the final normalization */
137 : } state;
138 : };
139 :
140 : /*
141 : * Init restart_mul sub-context
142 : */
143 0 : static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144 : {
145 0 : mbedtls_ecp_point_init(&ctx->R);
146 0 : ctx->i = 0;
147 0 : ctx->T = NULL;
148 0 : ctx->T_size = 0;
149 0 : ctx->state = ecp_rsm_init;
150 0 : }
151 :
152 : /*
153 : * Free the components of a restart_mul sub-context
154 : */
155 1026 : static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156 : {
157 : unsigned char i;
158 :
159 1026 : if (ctx == NULL) {
160 1026 : return;
161 : }
162 :
163 0 : mbedtls_ecp_point_free(&ctx->R);
164 :
165 0 : if (ctx->T != NULL) {
166 0 : for (i = 0; i < ctx->T_size; i++) {
167 0 : mbedtls_ecp_point_free(ctx->T + i);
168 : }
169 0 : mbedtls_free(ctx->T);
170 : }
171 :
172 0 : ecp_restart_rsm_init(ctx);
173 : }
174 :
175 : /*
176 : * Restart context for ecp_muladd()
177 : */
178 : struct mbedtls_ecp_restart_muladd {
179 : mbedtls_ecp_point mP; /* mP value */
180 : mbedtls_ecp_point R; /* R intermediate result */
181 : enum { /* what should we do next? */
182 : ecp_rsma_mul1 = 0, /* first multiplication */
183 : ecp_rsma_mul2, /* second multiplication */
184 : ecp_rsma_add, /* addition */
185 : ecp_rsma_norm, /* normalization */
186 : } state;
187 : };
188 :
189 : /*
190 : * Init restart_muladd sub-context
191 : */
192 0 : static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193 : {
194 0 : mbedtls_ecp_point_init(&ctx->mP);
195 0 : mbedtls_ecp_point_init(&ctx->R);
196 0 : ctx->state = ecp_rsma_mul1;
197 0 : }
198 :
199 : /*
200 : * Free the components of a restart_muladd sub-context
201 : */
202 1026 : static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203 : {
204 1026 : if (ctx == NULL) {
205 1026 : return;
206 : }
207 :
208 0 : mbedtls_ecp_point_free(&ctx->mP);
209 0 : mbedtls_ecp_point_free(&ctx->R);
210 :
211 0 : ecp_restart_ma_init(ctx);
212 : }
213 :
214 : /*
215 : * Initialize a restart context
216 : */
217 2270 : void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218 : {
219 2270 : ctx->ops_done = 0;
220 2270 : ctx->depth = 0;
221 2270 : ctx->rsm = NULL;
222 2270 : ctx->ma = NULL;
223 2270 : }
224 :
225 : /*
226 : * Free the components of a restart context
227 : */
228 1026 : void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229 : {
230 1026 : if (ctx == NULL) {
231 0 : return;
232 : }
233 :
234 1026 : ecp_restart_rsm_free(ctx->rsm);
235 1026 : mbedtls_free(ctx->rsm);
236 :
237 1026 : ecp_restart_ma_free(ctx->ma);
238 1026 : mbedtls_free(ctx->ma);
239 :
240 1026 : mbedtls_ecp_restart_init(ctx);
241 : }
242 :
243 : /*
244 : * Check if we can do the next step
245 : */
246 504510 : int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247 : mbedtls_ecp_restart_ctx *rs_ctx,
248 : unsigned ops)
249 : {
250 504510 : if (rs_ctx != NULL && ecp_max_ops != 0) {
251 : /* scale depending on curve size: the chosen reference is 256-bit,
252 : * and multiplication is quadratic. Round to the closest integer. */
253 0 : if (grp->pbits >= 512) {
254 0 : ops *= 4;
255 0 : } else if (grp->pbits >= 384) {
256 0 : ops *= 2;
257 : }
258 :
259 : /* Avoid infinite loops: always allow first step.
260 : * Because of that, however, it's not generally true
261 : * that ops_done <= ecp_max_ops, so the check
262 : * ops_done > ecp_max_ops below is mandatory. */
263 0 : if ((rs_ctx->ops_done != 0) &&
264 0 : (rs_ctx->ops_done > ecp_max_ops ||
265 0 : ops > ecp_max_ops - rs_ctx->ops_done)) {
266 0 : return MBEDTLS_ERR_ECP_IN_PROGRESS;
267 : }
268 :
269 : /* update running count */
270 0 : rs_ctx->ops_done += ops;
271 : }
272 :
273 504510 : return 0;
274 : }
275 :
276 : /* Call this when entering a function that needs its own sub-context */
277 : #define ECP_RS_ENTER(SUB) do { \
278 : /* reset ops count for this call if top-level */ \
279 : if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
280 : rs_ctx->ops_done = 0; \
281 : \
282 : /* set up our own sub-context if needed */ \
283 : if (mbedtls_ecp_restart_is_enabled() && \
284 : rs_ctx != NULL && rs_ctx->SUB == NULL) \
285 : { \
286 : rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
287 : if (rs_ctx->SUB == NULL) \
288 : return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
289 : \
290 : ecp_restart_## SUB ##_init(rs_ctx->SUB); \
291 : } \
292 : } while (0)
293 :
294 : /* Call this when leaving a function that needs its own sub-context */
295 : #define ECP_RS_LEAVE(SUB) do { \
296 : /* clear our sub-context when not in progress (done or error) */ \
297 : if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
298 : ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
299 : { \
300 : ecp_restart_## SUB ##_free(rs_ctx->SUB); \
301 : mbedtls_free(rs_ctx->SUB); \
302 : rs_ctx->SUB = NULL; \
303 : } \
304 : \
305 : if (rs_ctx != NULL) \
306 : rs_ctx->depth--; \
307 : } while (0)
308 :
309 : #else /* MBEDTLS_ECP_RESTARTABLE */
310 :
311 : #define ECP_RS_ENTER(sub) (void) rs_ctx;
312 : #define ECP_RS_LEAVE(sub) (void) rs_ctx;
313 :
314 : #endif /* MBEDTLS_ECP_RESTARTABLE */
315 :
316 : #if defined(MBEDTLS_ECP_C)
317 9441 : static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318 : {
319 50297 : while (size--) {
320 40856 : mbedtls_mpi_init(arr++);
321 : }
322 9441 : }
323 :
324 9441 : static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325 : {
326 50297 : while (size--) {
327 40856 : mbedtls_mpi_free(arr++);
328 : }
329 9441 : }
330 : #endif /* MBEDTLS_ECP_C */
331 :
332 : /*
333 : * List of supported curves:
334 : * - internal ID
335 : * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336 : * - size in bits
337 : * - readable name
338 : *
339 : * Curves are listed in order: largest curves first, and for a given size,
340 : * fastest curves first.
341 : *
342 : * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343 : */
344 : static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345 : {
346 : #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347 : { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
348 : #endif
349 : #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350 : { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
351 : #endif
352 : #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353 : { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
354 : #endif
355 : #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356 : { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
357 : #endif
358 : #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359 : { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
360 : #endif
361 : #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362 : { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
363 : #endif
364 : #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365 : { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
366 : #endif
367 : #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368 : { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
369 : #endif
370 : #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371 : { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
372 : #endif
373 : #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374 : { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
375 : #endif
376 : #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377 : { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
378 : #endif
379 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380 : { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
381 : #endif
382 : #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383 : { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
384 : #endif
385 : { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
386 : };
387 :
388 : #define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
389 : sizeof(ecp_supported_curves[0])
390 :
391 : static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392 :
393 : /*
394 : * List of supported curves and associated info
395 : */
396 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397 : {
398 0 : return ecp_supported_curves;
399 : }
400 :
401 : /*
402 : * List of supported curves, group ID only
403 : */
404 0 : const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405 : {
406 : static int init_done = 0;
407 :
408 0 : if (!init_done) {
409 0 : size_t i = 0;
410 : const mbedtls_ecp_curve_info *curve_info;
411 :
412 0 : for (curve_info = mbedtls_ecp_curve_list();
413 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414 0 : curve_info++) {
415 0 : ecp_supported_grp_id[i++] = curve_info->grp_id;
416 : }
417 0 : ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418 :
419 0 : init_done = 1;
420 : }
421 :
422 0 : return ecp_supported_grp_id;
423 : }
424 :
425 : /*
426 : * Get the curve info for the internal identifier
427 : */
428 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429 : {
430 : const mbedtls_ecp_curve_info *curve_info;
431 :
432 0 : for (curve_info = mbedtls_ecp_curve_list();
433 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434 0 : curve_info++) {
435 0 : if (curve_info->grp_id == grp_id) {
436 0 : return curve_info;
437 : }
438 : }
439 :
440 0 : return NULL;
441 : }
442 :
443 : /*
444 : * Get the curve info from the TLS identifier
445 : */
446 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447 : {
448 : const mbedtls_ecp_curve_info *curve_info;
449 :
450 0 : for (curve_info = mbedtls_ecp_curve_list();
451 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452 0 : curve_info++) {
453 0 : if (curve_info->tls_id == tls_id) {
454 0 : return curve_info;
455 : }
456 : }
457 :
458 0 : return NULL;
459 : }
460 :
461 : /*
462 : * Get the curve info from the name
463 : */
464 0 : const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465 : {
466 : const mbedtls_ecp_curve_info *curve_info;
467 :
468 0 : if (name == NULL) {
469 0 : return NULL;
470 : }
471 :
472 0 : for (curve_info = mbedtls_ecp_curve_list();
473 0 : curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474 0 : curve_info++) {
475 0 : if (strcmp(curve_info->name, name) == 0) {
476 0 : return curve_info;
477 : }
478 : }
479 :
480 0 : return NULL;
481 : }
482 :
483 : /*
484 : * Get the type of a curve
485 : */
486 69591 : mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487 : {
488 69591 : if (grp->G.X.p == NULL) {
489 0 : return MBEDTLS_ECP_TYPE_NONE;
490 : }
491 :
492 69591 : if (grp->G.Y.p == NULL) {
493 0 : return MBEDTLS_ECP_TYPE_MONTGOMERY;
494 : } else {
495 69591 : return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496 : }
497 : }
498 :
499 : /*
500 : * Initialize (the components of) a point
501 : */
502 61444 : void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503 : {
504 61444 : mbedtls_mpi_init(&pt->X);
505 61444 : mbedtls_mpi_init(&pt->Y);
506 61444 : mbedtls_mpi_init(&pt->Z);
507 61444 : }
508 :
509 : /*
510 : * Initialize (the components of) a group
511 : */
512 25945 : void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513 : {
514 25945 : grp->id = MBEDTLS_ECP_DP_NONE;
515 25945 : mbedtls_mpi_init(&grp->P);
516 25945 : mbedtls_mpi_init(&grp->A);
517 25945 : mbedtls_mpi_init(&grp->B);
518 25945 : mbedtls_ecp_point_init(&grp->G);
519 25945 : mbedtls_mpi_init(&grp->N);
520 25945 : grp->pbits = 0;
521 25945 : grp->nbits = 0;
522 25945 : grp->h = 0;
523 25945 : grp->modp = NULL;
524 25945 : grp->t_pre = NULL;
525 25945 : grp->t_post = NULL;
526 25945 : grp->t_data = NULL;
527 25945 : grp->T = NULL;
528 25945 : grp->T_size = 0;
529 25945 : }
530 :
531 : /*
532 : * Initialize (the components of) a key pair
533 : */
534 11656 : void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535 : {
536 11656 : mbedtls_ecp_group_init(&key->grp);
537 11656 : mbedtls_mpi_init(&key->d);
538 11656 : mbedtls_ecp_point_init(&key->Q);
539 11656 : }
540 :
541 : /*
542 : * Unallocate (the components of) a point
543 : */
544 47521 : void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545 : {
546 47521 : if (pt == NULL) {
547 0 : return;
548 : }
549 :
550 47521 : mbedtls_mpi_free(&(pt->X));
551 47521 : mbedtls_mpi_free(&(pt->Y));
552 47521 : mbedtls_mpi_free(&(pt->Z));
553 : }
554 :
555 : /*
556 : * Check that the comb table (grp->T) is static initialized.
557 : */
558 27507 : static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559 : {
560 : #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561 27507 : return grp->T != NULL && grp->T_size == 0;
562 : #else
563 : (void) grp;
564 : return 0;
565 : #endif
566 : }
567 :
568 : /*
569 : * Unallocate (the components of) a group
570 : */
571 25721 : void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572 : {
573 : size_t i;
574 :
575 25721 : if (grp == NULL) {
576 0 : return;
577 : }
578 :
579 25721 : if (grp->h != 1) {
580 12900 : mbedtls_mpi_free(&grp->A);
581 12900 : mbedtls_mpi_free(&grp->B);
582 12900 : mbedtls_ecp_point_free(&grp->G);
583 :
584 : #if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585 12900 : mbedtls_mpi_free(&grp->N);
586 12900 : mbedtls_mpi_free(&grp->P);
587 : #endif
588 : }
589 :
590 25721 : if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591 0 : for (i = 0; i < grp->T_size; i++) {
592 0 : mbedtls_ecp_point_free(&grp->T[i]);
593 : }
594 0 : mbedtls_free(grp->T);
595 : }
596 :
597 25721 : mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598 : }
599 :
600 : /*
601 : * Unallocate (the components of) a key pair
602 : */
603 11650 : void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604 : {
605 11650 : if (key == NULL) {
606 0 : return;
607 : }
608 :
609 11650 : mbedtls_ecp_group_free(&key->grp);
610 11650 : mbedtls_mpi_free(&key->d);
611 11650 : mbedtls_ecp_point_free(&key->Q);
612 : }
613 :
614 : /*
615 : * Copy the contents of a point
616 : */
617 7264 : int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618 : {
619 7264 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620 7264 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621 7264 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622 7264 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623 :
624 7264 : cleanup:
625 7264 : return ret;
626 : }
627 :
628 : /*
629 : * Copy the contents of a group object
630 : */
631 6 : int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632 : {
633 6 : return mbedtls_ecp_group_load(dst, src->id);
634 : }
635 :
636 : /*
637 : * Set point to zero
638 : */
639 0 : int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640 : {
641 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645 :
646 0 : cleanup:
647 0 : return ret;
648 : }
649 :
650 : /*
651 : * Tell if a point is zero
652 : */
653 1546 : int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654 : {
655 1546 : return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656 : }
657 :
658 : /*
659 : * Compare two points lazily
660 : */
661 0 : int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662 : const mbedtls_ecp_point *Q)
663 : {
664 0 : if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665 0 : mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666 0 : mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667 0 : return 0;
668 : }
669 :
670 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671 : }
672 :
673 : /*
674 : * Import a non-zero point from ASCII strings
675 : */
676 0 : int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677 : const char *x, const char *y)
678 : {
679 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683 :
684 0 : cleanup:
685 0 : return ret;
686 : }
687 :
688 : /*
689 : * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690 : */
691 12 : int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692 : const mbedtls_ecp_point *P,
693 : int format, size_t *olen,
694 : unsigned char *buf, size_t buflen)
695 : {
696 12 : int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697 : size_t plen;
698 12 : if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699 : format != MBEDTLS_ECP_PF_COMPRESSED) {
700 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701 : }
702 :
703 12 : plen = mbedtls_mpi_size(&grp->P);
704 :
705 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706 : (void) format; /* Montgomery curves always use the same point format */
707 12 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708 0 : *olen = plen;
709 0 : if (buflen < *olen) {
710 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711 : }
712 :
713 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714 : }
715 : #endif
716 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717 12 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718 : /*
719 : * Common case: P == 0
720 : */
721 12 : if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722 0 : if (buflen < 1) {
723 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724 : }
725 :
726 0 : buf[0] = 0x00;
727 0 : *olen = 1;
728 :
729 0 : return 0;
730 : }
731 :
732 12 : if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733 12 : *olen = 2 * plen + 1;
734 :
735 12 : if (buflen < *olen) {
736 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737 : }
738 :
739 12 : buf[0] = 0x04;
740 12 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741 12 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742 0 : } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743 0 : *olen = plen + 1;
744 :
745 0 : if (buflen < *olen) {
746 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747 : }
748 :
749 0 : buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751 : }
752 : }
753 : #endif
754 :
755 0 : cleanup:
756 12 : return ret;
757 : }
758 :
759 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760 : static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761 : const mbedtls_mpi *X,
762 : mbedtls_mpi *Y,
763 : int parity_bit);
764 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765 :
766 : /*
767 : * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768 : */
769 11650 : int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770 : mbedtls_ecp_point *pt,
771 : const unsigned char *buf, size_t ilen)
772 : {
773 11650 : int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774 : size_t plen;
775 11650 : if (ilen < 1) {
776 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777 : }
778 :
779 11650 : plen = mbedtls_mpi_size(&grp->P);
780 :
781 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782 11650 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783 0 : if (plen != ilen) {
784 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785 : }
786 :
787 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788 0 : mbedtls_mpi_free(&pt->Y);
789 :
790 0 : if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791 : /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793 : }
794 :
795 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796 : }
797 : #endif
798 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799 11650 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800 11650 : if (buf[0] == 0x00) {
801 0 : if (ilen == 1) {
802 0 : return mbedtls_ecp_set_zero(pt);
803 : } else {
804 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805 : }
806 : }
807 :
808 11650 : if (ilen < 1 + plen) {
809 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810 : }
811 :
812 11650 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813 11650 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814 :
815 11650 : if (buf[0] == 0x04) {
816 : /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817 11650 : if (ilen != 1 + plen * 2) {
818 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819 : }
820 11650 : return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821 0 : } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822 : /* format == MBEDTLS_ECP_PF_COMPRESSED */
823 0 : if (ilen != 1 + plen) {
824 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825 : }
826 0 : return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827 0 : (buf[0] & 1));
828 : } else {
829 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830 : }
831 : }
832 : #endif
833 :
834 0 : cleanup:
835 0 : return ret;
836 : }
837 :
838 : /*
839 : * Import a point from a TLS ECPoint record (RFC 4492)
840 : * struct {
841 : * opaque point <1..2^8-1>;
842 : * } ECPoint;
843 : */
844 0 : int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845 : mbedtls_ecp_point *pt,
846 : const unsigned char **buf, size_t buf_len)
847 : {
848 : unsigned char data_len;
849 : const unsigned char *buf_start;
850 : /*
851 : * We must have at least two bytes (1 for length, at least one for data)
852 : */
853 0 : if (buf_len < 2) {
854 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855 : }
856 :
857 0 : data_len = *(*buf)++;
858 0 : if (data_len < 1 || data_len > buf_len - 1) {
859 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860 : }
861 :
862 : /*
863 : * Save buffer start for read_binary and update buf
864 : */
865 0 : buf_start = *buf;
866 0 : *buf += data_len;
867 :
868 0 : return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869 : }
870 :
871 : /*
872 : * Export a point as a TLS ECPoint record (RFC 4492)
873 : * struct {
874 : * opaque point <1..2^8-1>;
875 : * } ECPoint;
876 : */
877 0 : int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878 : int format, size_t *olen,
879 : unsigned char *buf, size_t blen)
880 : {
881 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882 0 : if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883 : format != MBEDTLS_ECP_PF_COMPRESSED) {
884 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885 : }
886 :
887 : /*
888 : * buffer length must be at least one, for our length byte
889 : */
890 0 : if (blen < 1) {
891 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892 : }
893 :
894 0 : if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895 : olen, buf + 1, blen - 1)) != 0) {
896 0 : return ret;
897 : }
898 :
899 : /*
900 : * write length to the first byte and update total length
901 : */
902 0 : buf[0] = (unsigned char) *olen;
903 0 : ++*olen;
904 :
905 0 : return 0;
906 : }
907 :
908 : /*
909 : * Set a group from an ECParameters record (RFC 4492)
910 : */
911 0 : int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912 : const unsigned char **buf, size_t len)
913 : {
914 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915 : mbedtls_ecp_group_id grp_id;
916 0 : if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917 0 : return ret;
918 : }
919 :
920 0 : return mbedtls_ecp_group_load(grp, grp_id);
921 : }
922 :
923 : /*
924 : * Read a group id from an ECParameters record (RFC 4492) and convert it to
925 : * mbedtls_ecp_group_id.
926 : */
927 0 : int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928 : const unsigned char **buf, size_t len)
929 : {
930 : uint16_t tls_id;
931 : const mbedtls_ecp_curve_info *curve_info;
932 : /*
933 : * We expect at least three bytes (see below)
934 : */
935 0 : if (len < 3) {
936 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937 : }
938 :
939 : /*
940 : * First byte is curve_type; only named_curve is handled
941 : */
942 0 : if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944 : }
945 :
946 : /*
947 : * Next two bytes are the namedcurve value
948 : */
949 0 : tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950 0 : *buf += 2;
951 :
952 0 : if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954 : }
955 :
956 0 : *grp = curve_info->grp_id;
957 :
958 0 : return 0;
959 : }
960 :
961 : /*
962 : * Write the ECParameters record corresponding to a group (RFC 4492)
963 : */
964 0 : int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965 : unsigned char *buf, size_t blen)
966 : {
967 : const mbedtls_ecp_curve_info *curve_info;
968 0 : if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970 : }
971 :
972 : /*
973 : * We are going to write 3 bytes (see below)
974 : */
975 0 : *olen = 3;
976 0 : if (blen < *olen) {
977 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978 : }
979 :
980 : /*
981 : * First byte is curve_type, always named_curve
982 : */
983 0 : *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984 :
985 : /*
986 : * Next two bytes are the namedcurve value
987 : */
988 0 : MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989 :
990 0 : return 0;
991 : }
992 :
993 : /*
994 : * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995 : * See the documentation of struct mbedtls_ecp_group.
996 : *
997 : * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998 : */
999 6321385 : static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000 : {
1001 6321385 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002 :
1003 6321385 : if (grp->modp == NULL) {
1004 0 : return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005 : }
1006 :
1007 : /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008 6321385 : if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009 6321385 : mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011 : }
1012 :
1013 6321385 : MBEDTLS_MPI_CHK(grp->modp(N));
1014 :
1015 : /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016 11434807 : while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017 5113422 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018 : }
1019 :
1020 7467664 : while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021 : /* we known P, N and the result are positive */
1022 1146279 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023 : }
1024 :
1025 6321385 : cleanup:
1026 6321385 : return ret;
1027 : }
1028 :
1029 : /*
1030 : * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031 : *
1032 : * In order to guarantee that, we need to ensure that operands of
1033 : * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034 : * bring the result back to this range.
1035 : *
1036 : * The following macros are shortcuts for doing that.
1037 : */
1038 :
1039 : /*
1040 : * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041 : */
1042 : #if defined(MBEDTLS_SELF_TEST)
1043 : #define INC_MUL_COUNT mul_count++;
1044 : #else
1045 : #define INC_MUL_COUNT
1046 : #endif
1047 :
1048 : #define MOD_MUL(N) \
1049 : do \
1050 : { \
1051 : MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
1052 : INC_MUL_COUNT \
1053 : } while (0)
1054 :
1055 6321385 : static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056 : mbedtls_mpi *X,
1057 : const mbedtls_mpi *A,
1058 : const mbedtls_mpi *B)
1059 : {
1060 6321385 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061 6321385 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062 6321385 : MOD_MUL(*X);
1063 6321385 : cleanup:
1064 6321385 : return ret;
1065 : }
1066 :
1067 : /*
1068 : * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069 : * N->s < 0 is a very fast test, which fails only if N is 0
1070 : */
1071 : #define MOD_SUB(N) \
1072 : do { \
1073 : while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
1074 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
1075 : } while (0)
1076 :
1077 : MBEDTLS_MAYBE_UNUSED
1078 3667894 : static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1079 : mbedtls_mpi *X,
1080 : const mbedtls_mpi *A,
1081 : const mbedtls_mpi *B)
1082 : {
1083 3667894 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1084 3667894 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1085 5511391 : MOD_SUB(X);
1086 3667894 : cleanup:
1087 3667894 : return ret;
1088 : }
1089 :
1090 : /*
1091 : * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1092 : * We known P, N and the result are positive, so sub_abs is correct, and
1093 : * a bit faster.
1094 : */
1095 : #define MOD_ADD(N) \
1096 : while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
1097 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1098 :
1099 503630 : static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1100 : mbedtls_mpi *X,
1101 : const mbedtls_mpi *A,
1102 : const mbedtls_mpi *B)
1103 : {
1104 503630 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105 503630 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1106 746549 : MOD_ADD(X);
1107 503630 : cleanup:
1108 503630 : return ret;
1109 : }
1110 :
1111 : MBEDTLS_MAYBE_UNUSED
1112 488648 : static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1113 : mbedtls_mpi *X,
1114 : const mbedtls_mpi *A,
1115 : mbedtls_mpi_uint c)
1116 : {
1117 488648 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1118 :
1119 488648 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1120 968501 : MOD_ADD(X);
1121 488648 : cleanup:
1122 488648 : return ret;
1123 : }
1124 :
1125 : MBEDTLS_MAYBE_UNUSED
1126 14982 : static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1127 : mbedtls_mpi *X,
1128 : const mbedtls_mpi *A,
1129 : mbedtls_mpi_uint c)
1130 : {
1131 14982 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132 :
1133 14982 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1134 14982 : MOD_SUB(X);
1135 14982 : cleanup:
1136 14982 : return ret;
1137 : }
1138 :
1139 : #define MPI_ECP_SUB_INT(X, A, c) \
1140 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1141 :
1142 : MBEDTLS_MAYBE_UNUSED
1143 2158701 : static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1144 : mbedtls_mpi *X,
1145 : size_t count)
1146 : {
1147 2158701 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1148 2158701 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1149 3216659 : MOD_ADD(X);
1150 2158701 : cleanup:
1151 2158701 : return ret;
1152 : }
1153 :
1154 : /*
1155 : * Macro wrappers around ECP modular arithmetic
1156 : *
1157 : * Currently, these wrappers are defined via the bignum module.
1158 : */
1159 :
1160 : #define MPI_ECP_ADD(X, A, B) \
1161 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1162 :
1163 : #define MPI_ECP_SUB(X, A, B) \
1164 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1165 :
1166 : #define MPI_ECP_MUL(X, A, B) \
1167 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1168 :
1169 : #define MPI_ECP_SQR(X, A) \
1170 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1171 :
1172 : #define MPI_ECP_MUL_INT(X, A, c) \
1173 : MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1174 :
1175 : #define MPI_ECP_INV(dst, src) \
1176 : MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1177 :
1178 : #define MPI_ECP_MOV(X, A) \
1179 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1180 :
1181 : #define MPI_ECP_SHIFT_L(X, count) \
1182 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1183 :
1184 : #define MPI_ECP_LSET(X, c) \
1185 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1186 :
1187 : #define MPI_ECP_CMP_INT(X, c) \
1188 : mbedtls_mpi_cmp_int(X, c)
1189 :
1190 : #define MPI_ECP_CMP(X, Y) \
1191 : mbedtls_mpi_cmp_mpi(X, Y)
1192 :
1193 : /* Needs f_rng, p_rng to be defined. */
1194 : #define MPI_ECP_RAND(X) \
1195 : MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1196 :
1197 : /* Conditional negation
1198 : * Needs grp and a temporary MPI tmp to be defined. */
1199 : #define MPI_ECP_COND_NEG(X, cond) \
1200 : do \
1201 : { \
1202 : unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
1203 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
1204 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
1205 : nonzero & cond)); \
1206 : } while (0)
1207 :
1208 : #define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1209 :
1210 : #define MPI_ECP_VALID(X) \
1211 : ((X)->p != NULL)
1212 :
1213 : #define MPI_ECP_COND_ASSIGN(X, Y, cond) \
1214 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1215 :
1216 : #define MPI_ECP_COND_SWAP(X, Y, cond) \
1217 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1218 :
1219 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1220 :
1221 : /*
1222 : * Computes the right-hand side of the Short Weierstrass equation
1223 : * RHS = X^3 + A X + B
1224 : */
1225 14982 : static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1226 : mbedtls_mpi *rhs,
1227 : const mbedtls_mpi *X)
1228 : {
1229 : int ret;
1230 :
1231 : /* Compute X^3 + A X + B as X (X^2 + A) + B */
1232 14982 : MPI_ECP_SQR(rhs, X);
1233 :
1234 : /* Special case for A = -3 */
1235 14982 : if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1236 14982 : MPI_ECP_SUB_INT(rhs, rhs, 3);
1237 : } else {
1238 0 : MPI_ECP_ADD(rhs, rhs, &grp->A);
1239 : }
1240 :
1241 14982 : MPI_ECP_MUL(rhs, rhs, X);
1242 14982 : MPI_ECP_ADD(rhs, rhs, &grp->B);
1243 :
1244 14982 : cleanup:
1245 14982 : return ret;
1246 : }
1247 :
1248 : /*
1249 : * Derive Y from X and a parity bit
1250 : */
1251 0 : static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1252 : const mbedtls_mpi *X,
1253 : mbedtls_mpi *Y,
1254 : int parity_bit)
1255 : {
1256 : /* w = y^2 = x^3 + ax + b
1257 : * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
1258 : *
1259 : * Note: this method for extracting square root does not validate that w
1260 : * was indeed a square so this function will return garbage in Y if X
1261 : * does not correspond to a point on the curve.
1262 : */
1263 :
1264 : /* Check prerequisite p = 3 mod 4 */
1265 0 : if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1266 0 : mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1267 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1268 : }
1269 :
1270 : int ret;
1271 : mbedtls_mpi exp;
1272 0 : mbedtls_mpi_init(&exp);
1273 :
1274 : /* use Y to store intermediate result, actually w above */
1275 0 : MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1276 :
1277 : /* w = y^2 */ /* Y contains y^2 intermediate result */
1278 : /* exp = ((p+1)/4) */
1279 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1280 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1281 : /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
1282 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1283 :
1284 : /* check parity bit match or else invert Y */
1285 : /* This quick inversion implementation is valid because Y != 0 for all
1286 : * Short Weierstrass curves supported by mbedtls, as each supported curve
1287 : * has an order that is a large prime, so each supported curve does not
1288 : * have any point of order 2, and a point with Y == 0 would be of order 2 */
1289 0 : if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1290 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1291 : }
1292 :
1293 0 : cleanup:
1294 :
1295 0 : mbedtls_mpi_free(&exp);
1296 0 : return ret;
1297 : }
1298 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1299 :
1300 : #if defined(MBEDTLS_ECP_C)
1301 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1302 : /*
1303 : * For curves in short Weierstrass form, we do all the internal operations in
1304 : * Jacobian coordinates.
1305 : *
1306 : * For multiplication, we'll use a comb method with countermeasures against
1307 : * SPA, hence timing attacks.
1308 : */
1309 :
1310 : /*
1311 : * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
1312 : * Cost: 1N := 1I + 3M + 1S
1313 : */
1314 4803 : static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1315 : {
1316 4803 : if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1317 0 : return 0;
1318 : }
1319 :
1320 : #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1321 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1322 : return mbedtls_internal_ecp_normalize_jac(grp, pt);
1323 : }
1324 : #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1325 :
1326 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1327 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1328 : #else
1329 4803 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1330 : mbedtls_mpi T;
1331 4803 : mbedtls_mpi_init(&T);
1332 :
1333 4803 : MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
1334 4803 : MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
1335 4803 : MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
1336 4803 : MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
1337 4803 : MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
1338 :
1339 4803 : MPI_ECP_LSET(&pt->Z, 1);
1340 :
1341 4803 : cleanup:
1342 :
1343 4803 : mbedtls_mpi_free(&T);
1344 :
1345 4803 : return ret;
1346 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1347 : }
1348 :
1349 : /*
1350 : * Normalize jacobian coordinates of an array of (pointers to) points,
1351 : * using Montgomery's trick to perform only one inversion mod P.
1352 : * (See for example Cohen's "A Course in Computational Algebraic Number
1353 : * Theory", Algorithm 10.3.4.)
1354 : *
1355 : * Warning: fails (returning an error) if one of the points is zero!
1356 : * This should never happen, see choice of w in ecp_mul_comb().
1357 : *
1358 : * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1359 : */
1360 3092 : static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1361 : mbedtls_ecp_point *T[], size_t T_size)
1362 : {
1363 3092 : if (T_size < 2) {
1364 0 : return ecp_normalize_jac(grp, *T);
1365 : }
1366 :
1367 : #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1368 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1369 : return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1370 : }
1371 : #endif
1372 :
1373 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1374 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1375 : #else
1376 3092 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1377 : size_t i;
1378 : mbedtls_mpi *c, t;
1379 :
1380 3092 : if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1381 0 : return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1382 : }
1383 :
1384 3092 : mbedtls_mpi_init(&t);
1385 :
1386 3092 : mpi_init_many(c, T_size);
1387 : /*
1388 : * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
1389 : */
1390 3092 : MPI_ECP_MOV(&c[0], &T[0]->Z);
1391 15460 : for (i = 1; i < T_size; i++) {
1392 12368 : MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1393 : }
1394 :
1395 : /*
1396 : * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1397 : */
1398 3092 : MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1399 :
1400 15460 : for (i = T_size - 1;; i--) {
1401 : /* At the start of iteration i (note that i decrements), we have
1402 : * - c[j] = Z_0 * .... * Z_j for j < i,
1403 : * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
1404 : *
1405 : * This is maintained via
1406 : * - c[i-1] <- c[i] * Z_i
1407 : *
1408 : * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1409 : * to do the actual normalization. For i==0, we already have
1410 : * c[0] = 1 / Z_0.
1411 : */
1412 :
1413 15460 : if (i > 0) {
1414 : /* Compute 1/Z_i and establish invariant for the next iteration. */
1415 12368 : MPI_ECP_MUL(&t, &c[i], &c[i-1]);
1416 12368 : MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1417 : } else {
1418 3092 : MPI_ECP_MOV(&t, &c[0]);
1419 : }
1420 :
1421 : /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1422 15460 : MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1423 15460 : MPI_ECP_SQR(&t, &t);
1424 15460 : MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1425 15460 : MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1426 :
1427 : /*
1428 : * Post-precessing: reclaim some memory by shrinking coordinates
1429 : * - not storing Z (always 1)
1430 : * - shrinking other coordinates, but still keeping the same number of
1431 : * limbs as P, as otherwise it will too likely be regrown too fast.
1432 : */
1433 15460 : MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1434 15460 : MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1435 :
1436 15460 : MPI_ECP_LSET(&T[i]->Z, 1);
1437 :
1438 15460 : if (i == 0) {
1439 3092 : break;
1440 : }
1441 : }
1442 :
1443 3092 : cleanup:
1444 :
1445 3092 : mbedtls_mpi_free(&t);
1446 3092 : mpi_free_many(c, T_size);
1447 3092 : mbedtls_free(c);
1448 :
1449 3092 : return ret;
1450 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1451 : }
1452 :
1453 : /*
1454 : * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1455 : * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1456 : */
1457 198480 : static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1458 : mbedtls_ecp_point *Q,
1459 : unsigned char inv)
1460 : {
1461 198480 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1462 : mbedtls_mpi tmp;
1463 198480 : mbedtls_mpi_init(&tmp);
1464 :
1465 198480 : MPI_ECP_COND_NEG(&Q->Y, inv);
1466 :
1467 198480 : cleanup:
1468 198480 : mbedtls_mpi_free(&tmp);
1469 198480 : return ret;
1470 : }
1471 :
1472 : /*
1473 : * Point doubling R = 2 P, Jacobian coordinates
1474 : *
1475 : * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1476 : *
1477 : * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1478 : * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1479 : *
1480 : * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1481 : *
1482 : * Cost: 1D := 3M + 4S (A == 0)
1483 : * 4M + 4S (A == -3)
1484 : * 3M + 6S + 1a otherwise
1485 : */
1486 488648 : static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1487 : const mbedtls_ecp_point *P,
1488 : mbedtls_mpi tmp[4])
1489 : {
1490 : #if defined(MBEDTLS_SELF_TEST)
1491 488648 : dbl_count++;
1492 : #endif
1493 :
1494 : #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1495 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1496 : return mbedtls_internal_ecp_double_jac(grp, R, P);
1497 : }
1498 : #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1499 :
1500 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1501 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1502 : #else
1503 488648 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1504 :
1505 : /* Special case for A = -3 */
1506 488648 : if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1507 : /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1508 488648 : MPI_ECP_SQR(&tmp[1], &P->Z);
1509 488648 : MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
1510 488648 : MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
1511 488648 : MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
1512 488648 : MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1513 : } else {
1514 : /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1515 0 : MPI_ECP_SQR(&tmp[1], &P->X);
1516 0 : MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
1517 :
1518 : /* Optimize away for "koblitz" curves with A = 0 */
1519 0 : if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1520 : /* M += A.Z^4 */
1521 0 : MPI_ECP_SQR(&tmp[1], &P->Z);
1522 0 : MPI_ECP_SQR(&tmp[2], &tmp[1]);
1523 0 : MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
1524 0 : MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
1525 : }
1526 : }
1527 :
1528 : /* tmp[1] <- S = 4.X.Y^2 */
1529 488648 : MPI_ECP_SQR(&tmp[2], &P->Y);
1530 488648 : MPI_ECP_SHIFT_L(&tmp[2], 1);
1531 488648 : MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
1532 488648 : MPI_ECP_SHIFT_L(&tmp[1], 1);
1533 :
1534 : /* tmp[3] <- U = 8.Y^4 */
1535 488648 : MPI_ECP_SQR(&tmp[3], &tmp[2]);
1536 488648 : MPI_ECP_SHIFT_L(&tmp[3], 1);
1537 :
1538 : /* tmp[2] <- T = M^2 - 2.S */
1539 488648 : MPI_ECP_SQR(&tmp[2], &tmp[0]);
1540 488648 : MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1541 488648 : MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
1542 :
1543 : /* tmp[1] <- S = M(S - T) - U */
1544 488648 : MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
1545 488648 : MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
1546 488648 : MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
1547 :
1548 : /* tmp[3] <- U = 2.Y.Z */
1549 488648 : MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
1550 488648 : MPI_ECP_SHIFT_L(&tmp[3], 1);
1551 :
1552 : /* Store results */
1553 488648 : MPI_ECP_MOV(&R->X, &tmp[2]);
1554 488648 : MPI_ECP_MOV(&R->Y, &tmp[1]);
1555 488648 : MPI_ECP_MOV(&R->Z, &tmp[3]);
1556 :
1557 488648 : cleanup:
1558 :
1559 488648 : return ret;
1560 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1561 : }
1562 :
1563 : /*
1564 : * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1565 : *
1566 : * The coordinates of Q must be normalized (= affine),
1567 : * but those of P don't need to. R is not normalized.
1568 : *
1569 : * P,Q,R may alias, but only at the level of EC points: they must be either
1570 : * equal as pointers, or disjoint (including the coordinate data buffers).
1571 : * Fine-grained aliasing at the level of coordinates is not supported.
1572 : *
1573 : * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1574 : * None of these cases can happen as intermediate step in ecp_mul_comb():
1575 : * - at each step, P, Q and R are multiples of the base point, the factor
1576 : * being less than its order, so none of them is zero;
1577 : * - Q is an odd multiple of the base point, P an even multiple,
1578 : * due to the choice of precomputed points in the modified comb method.
1579 : * So branches for these cases do not leak secret information.
1580 : *
1581 : * Cost: 1A := 8M + 3S
1582 : */
1583 204109 : static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1584 : const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1585 : mbedtls_mpi tmp[4])
1586 : {
1587 : #if defined(MBEDTLS_SELF_TEST)
1588 204109 : add_count++;
1589 : #endif
1590 :
1591 : #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1592 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1593 : return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1594 : }
1595 : #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1596 :
1597 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1598 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1599 : #else
1600 204109 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1601 :
1602 : /* NOTE: Aliasing between input and output is allowed, so one has to make
1603 : * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1604 : * longer read from. */
1605 204109 : mbedtls_mpi * const X = &R->X;
1606 204109 : mbedtls_mpi * const Y = &R->Y;
1607 204109 : mbedtls_mpi * const Z = &R->Z;
1608 :
1609 204109 : if (!MPI_ECP_VALID(&Q->Z)) {
1610 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1611 : }
1612 :
1613 : /*
1614 : * Trivial cases: P == 0 or Q == 0 (case 1)
1615 : */
1616 204109 : if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1617 0 : return mbedtls_ecp_copy(R, Q);
1618 : }
1619 :
1620 204109 : if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1621 0 : return mbedtls_ecp_copy(R, P);
1622 : }
1623 :
1624 : /*
1625 : * Make sure Q coordinates are normalized
1626 : */
1627 204109 : if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1628 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1629 : }
1630 :
1631 204109 : MPI_ECP_SQR(&tmp[0], &P->Z);
1632 204109 : MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1633 204109 : MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1634 204109 : MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1635 204109 : MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1636 204109 : MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1637 :
1638 : /* Special cases (2) and (3) */
1639 204109 : if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1640 0 : if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1641 0 : ret = ecp_double_jac(grp, R, P, tmp);
1642 0 : goto cleanup;
1643 : } else {
1644 0 : ret = mbedtls_ecp_set_zero(R);
1645 0 : goto cleanup;
1646 : }
1647 : }
1648 :
1649 : /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1650 204109 : MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
1651 204109 : MPI_ECP_SQR(&tmp[2], &tmp[0]);
1652 204109 : MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
1653 204109 : MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
1654 :
1655 204109 : MPI_ECP_MOV(&tmp[0], &tmp[2]);
1656 204109 : MPI_ECP_SHIFT_L(&tmp[0], 1);
1657 :
1658 : /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1659 204109 : MPI_ECP_SQR(X, &tmp[1]);
1660 204109 : MPI_ECP_SUB(X, X, &tmp[0]);
1661 204109 : MPI_ECP_SUB(X, X, &tmp[3]);
1662 204109 : MPI_ECP_SUB(&tmp[2], &tmp[2], X);
1663 204109 : MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
1664 204109 : MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
1665 : /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1666 204109 : MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
1667 :
1668 204109 : cleanup:
1669 :
1670 204109 : return ret;
1671 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1672 : }
1673 :
1674 : /*
1675 : * Randomize jacobian coordinates:
1676 : * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1677 : * This is sort of the reverse operation of ecp_normalize_jac().
1678 : *
1679 : * This countermeasure was first suggested in [2].
1680 : */
1681 780 : static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1682 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1683 : {
1684 : #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1685 : if (mbedtls_internal_ecp_grp_capable(grp)) {
1686 : return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1687 : }
1688 : #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1689 :
1690 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1691 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1692 : #else
1693 780 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1694 : mbedtls_mpi l;
1695 :
1696 780 : mbedtls_mpi_init(&l);
1697 :
1698 : /* Generate l such that 1 < l < p */
1699 780 : MPI_ECP_RAND(&l);
1700 :
1701 : /* Z' = l * Z */
1702 780 : MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
1703 :
1704 : /* Y' = l * Y */
1705 780 : MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1706 :
1707 : /* X' = l^2 * X */
1708 780 : MPI_ECP_SQR(&l, &l);
1709 780 : MPI_ECP_MUL(&pt->X, &pt->X, &l);
1710 :
1711 : /* Y'' = l^2 * Y' = l^3 * Y */
1712 780 : MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
1713 :
1714 780 : cleanup:
1715 780 : mbedtls_mpi_free(&l);
1716 :
1717 780 : if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1718 0 : ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1719 : }
1720 780 : return ret;
1721 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1722 : }
1723 :
1724 : /*
1725 : * Check and define parameters used by the comb method (see below for details)
1726 : */
1727 : #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1728 : #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1729 : #endif
1730 :
1731 : /* d = ceil( n / w ) */
1732 : #define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
1733 :
1734 : /* number of precomputed points */
1735 : #define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1736 :
1737 : /*
1738 : * Compute the representation of m that will be used with our comb method.
1739 : *
1740 : * The basic comb method is described in GECC 3.44 for example. We use a
1741 : * modified version that provides resistance to SPA by avoiding zero
1742 : * digits in the representation as in [3]. We modify the method further by
1743 : * requiring that all K_i be odd, which has the small cost that our
1744 : * representation uses one more K_i, due to carries, but saves on the size of
1745 : * the precomputed table.
1746 : *
1747 : * Summary of the comb method and its modifications:
1748 : *
1749 : * - The goal is to compute m*P for some w*d-bit integer m.
1750 : *
1751 : * - The basic comb method splits m into the w-bit integers
1752 : * x[0] .. x[d-1] where x[i] consists of the bits in m whose
1753 : * index has residue i modulo d, and computes m * P as
1754 : * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1755 : * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1756 : *
1757 : * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1758 : * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1759 : * thereby successively converting it into a form where all summands
1760 : * are nonzero, at the cost of negative summands. This is the basic idea of [3].
1761 : *
1762 : * - More generally, even if x[i+1] != 0, we can first transform the sum as
1763 : * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1764 : * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1765 : * Performing and iterating this procedure for those x[i] that are even
1766 : * (keeping track of carry), we can transform the original sum into one of the form
1767 : * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1768 : * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1769 : * which is why we are only computing half of it in the first place in
1770 : * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1771 : *
1772 : * - For the sake of compactness, only the seven low-order bits of x[i]
1773 : * are used to represent its absolute value (K_i in the paper), and the msb
1774 : * of x[i] encodes the sign (s_i in the paper): it is set if and only if
1775 : * if s_i == -1;
1776 : *
1777 : * Calling conventions:
1778 : * - x is an array of size d + 1
1779 : * - w is the size, ie number of teeth, of the comb, and must be between
1780 : * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1781 : * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1782 : * (the result will be incorrect if these assumptions are not satisfied)
1783 : */
1784 3332 : static void ecp_comb_recode_core(unsigned char x[], size_t d,
1785 : unsigned char w, const mbedtls_mpi *m)
1786 : {
1787 : size_t i, j;
1788 : unsigned char c, cc, adjust;
1789 :
1790 3332 : memset(x, 0, d+1);
1791 :
1792 : /* First get the classical comb values (except for x_d = 0) */
1793 195148 : for (i = 0; i < d; i++) {
1794 1051952 : for (j = 0; j < w; j++) {
1795 860136 : x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1796 : }
1797 : }
1798 :
1799 : /* Now make sure x_1 .. x_d are odd */
1800 3332 : c = 0;
1801 195148 : for (i = 1; i <= d; i++) {
1802 : /* Add carry and update it */
1803 191816 : cc = x[i] & c;
1804 191816 : x[i] = x[i] ^ c;
1805 191816 : c = cc;
1806 :
1807 : /* Adjust if needed, avoiding branches */
1808 191816 : adjust = 1 - (x[i] & 0x01);
1809 191816 : c |= x[i] & (x[i-1] * adjust);
1810 191816 : x[i] = x[i] ^ (x[i-1] * adjust);
1811 191816 : x[i-1] |= adjust << 7;
1812 : }
1813 3332 : }
1814 :
1815 : /*
1816 : * Precompute points for the adapted comb method
1817 : *
1818 : * Assumption: T must be able to hold 2^{w - 1} elements.
1819 : *
1820 : * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1821 : * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1822 : *
1823 : * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1824 : *
1825 : * Note: Even comb values (those where P would be omitted from the
1826 : * sum defining T[i] above) are not needed in our adaption
1827 : * the comb method. See ecp_comb_recode_core().
1828 : *
1829 : * This function currently works in four steps:
1830 : * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
1831 : * (2) [norm_dbl] Normalization of coordinates of these T[i]
1832 : * (3) [add] Computation of all T[i]
1833 : * (4) [norm_add] Normalization of all T[i]
1834 : *
1835 : * Step 1 can be interrupted but not the others; together with the final
1836 : * coordinate normalization they are the largest steps done at once, depending
1837 : * on the window size. Here are operation counts for P-256:
1838 : *
1839 : * step (2) (3) (4)
1840 : * w = 5 142 165 208
1841 : * w = 4 136 77 160
1842 : * w = 3 130 33 136
1843 : * w = 2 124 11 124
1844 : *
1845 : * So if ECC operations are blocking for too long even with a low max_ops
1846 : * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1847 : * to minimize maximum blocking time.
1848 : */
1849 1546 : static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1850 : mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1851 : unsigned char w, size_t d,
1852 : mbedtls_ecp_restart_ctx *rs_ctx)
1853 : {
1854 1546 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1855 : unsigned char i;
1856 1546 : size_t j = 0;
1857 1546 : const unsigned char T_size = 1U << (w - 1);
1858 1546 : mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1859 :
1860 : mbedtls_mpi tmp[4];
1861 :
1862 1546 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1863 :
1864 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1865 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1866 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1867 0 : goto dbl;
1868 : }
1869 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1870 0 : goto norm_dbl;
1871 : }
1872 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1873 0 : goto add;
1874 : }
1875 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1876 0 : goto norm_add;
1877 : }
1878 : }
1879 : #else
1880 : (void) rs_ctx;
1881 : #endif
1882 :
1883 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1884 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1885 0 : rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1886 :
1887 : /* initial state for the loop */
1888 0 : rs_ctx->rsm->i = 0;
1889 : }
1890 :
1891 1546 : dbl:
1892 : #endif
1893 : /*
1894 : * Set T[0] = P and
1895 : * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1896 : */
1897 1546 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1898 :
1899 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1900 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1901 0 : j = rs_ctx->rsm->i;
1902 : } else
1903 : #endif
1904 1546 : j = 0;
1905 :
1906 298378 : for (; j < d * (w - 1); j++) {
1907 296832 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1908 :
1909 296832 : i = 1U << (j / d);
1910 296832 : cur = T + i;
1911 :
1912 296832 : if (j % d == 0) {
1913 4638 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1914 : }
1915 :
1916 296832 : MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1917 : }
1918 :
1919 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1920 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1921 0 : rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1922 : }
1923 :
1924 1546 : norm_dbl:
1925 : #endif
1926 : /*
1927 : * Normalize current elements in T to allow them to be used in
1928 : * ecp_add_mixed() below, which requires one normalized input.
1929 : *
1930 : * As T has holes, use an auxiliary array of pointers to elements in T.
1931 : *
1932 : */
1933 1546 : j = 0;
1934 6184 : for (i = 1; i < T_size; i <<= 1) {
1935 4638 : TT[j++] = T + i;
1936 : }
1937 :
1938 1546 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1939 :
1940 1546 : MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1941 :
1942 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1943 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1944 0 : rs_ctx->rsm->state = ecp_rsm_pre_add;
1945 : }
1946 :
1947 1546 : add:
1948 : #endif
1949 : /*
1950 : * Compute the remaining ones using the minimal number of additions
1951 : * Be careful to update T[2^l] only after using it!
1952 : */
1953 1546 : MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1954 :
1955 6184 : for (i = 1; i < T_size; i <<= 1) {
1956 4638 : j = i;
1957 15460 : while (j--) {
1958 10822 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1959 : }
1960 : }
1961 :
1962 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1963 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1964 0 : rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1965 : }
1966 :
1967 1546 : norm_add:
1968 : #endif
1969 : /*
1970 : * Normalize final elements in T. Even though there are no holes now, we
1971 : * still need the auxiliary array for homogeneity with the previous
1972 : * call. Also, skip T[0] which is already normalised, being a copy of P.
1973 : */
1974 12368 : for (j = 0; j + 1 < T_size; j++) {
1975 10822 : TT[j] = T + j + 1;
1976 : }
1977 :
1978 1546 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1979 :
1980 1546 : MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1981 :
1982 : /* Free Z coordinate (=1 after normalization) to save RAM.
1983 : * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1984 : * since from this point onwards, they are only accessed indirectly
1985 : * via the getter function ecp_select_comb() which does set the
1986 : * target's Z coordinate to 1. */
1987 13914 : for (i = 0; i < T_size; i++) {
1988 12368 : mbedtls_mpi_free(&T[i].Z);
1989 : }
1990 :
1991 1546 : cleanup:
1992 :
1993 1546 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1994 :
1995 : #if defined(MBEDTLS_ECP_RESTARTABLE)
1996 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1997 : ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1998 0 : if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1999 0 : rs_ctx->rsm->i = j;
2000 : }
2001 : }
2002 : #endif
2003 :
2004 1546 : return ret;
2005 : }
2006 :
2007 : /*
2008 : * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2009 : *
2010 : * See ecp_comb_recode_core() for background
2011 : */
2012 195148 : static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2013 : const mbedtls_ecp_point T[], unsigned char T_size,
2014 : unsigned char i)
2015 : {
2016 195148 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017 : unsigned char ii, j;
2018 :
2019 : /* Ignore the "sign" bit and scale down */
2020 195148 : ii = (i & 0x7Fu) >> 1;
2021 :
2022 : /* Read the whole table to thwart cache-based timing attacks */
2023 2513596 : for (j = 0; j < T_size; j++) {
2024 2318448 : MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2025 2318448 : MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2026 : }
2027 :
2028 : /* Safely invert result if i is "negative" */
2029 195148 : MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2030 :
2031 195148 : MPI_ECP_LSET(&R->Z, 1);
2032 :
2033 195148 : cleanup:
2034 195148 : return ret;
2035 : }
2036 :
2037 : /*
2038 : * Core multiplication algorithm for the (modified) comb method.
2039 : * This part is actually common with the basic comb method (GECC 3.44)
2040 : *
2041 : * Cost: d A + d D + 1 R
2042 : */
2043 3332 : static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2044 : const mbedtls_ecp_point T[], unsigned char T_size,
2045 : const unsigned char x[], size_t d,
2046 : int (*f_rng)(void *, unsigned char *, size_t),
2047 : void *p_rng,
2048 : mbedtls_ecp_restart_ctx *rs_ctx)
2049 : {
2050 3332 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2051 : mbedtls_ecp_point Txi;
2052 : mbedtls_mpi tmp[4];
2053 : size_t i;
2054 :
2055 3332 : mbedtls_ecp_point_init(&Txi);
2056 3332 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2057 :
2058 : #if !defined(MBEDTLS_ECP_RESTARTABLE)
2059 : (void) rs_ctx;
2060 : #endif
2061 :
2062 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2063 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2064 0 : rs_ctx->rsm->state != ecp_rsm_comb_core) {
2065 0 : rs_ctx->rsm->i = 0;
2066 0 : rs_ctx->rsm->state = ecp_rsm_comb_core;
2067 : }
2068 :
2069 : /* new 'if' instead of nested for the sake of the 'else' branch */
2070 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2071 : /* restore current index (R already pointing to rs_ctx->rsm->R) */
2072 0 : i = rs_ctx->rsm->i;
2073 : } else
2074 : #endif
2075 : {
2076 : /* Start with a non-zero point and randomize its coordinates */
2077 3332 : i = d;
2078 3332 : MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2079 3332 : if (f_rng != 0) {
2080 390 : MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2081 : }
2082 : }
2083 :
2084 195148 : while (i != 0) {
2085 191816 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2086 191816 : --i;
2087 :
2088 191816 : MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2089 191816 : MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2090 191816 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2091 : }
2092 :
2093 3332 : cleanup:
2094 :
2095 3332 : mbedtls_ecp_point_free(&Txi);
2096 3332 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2097 :
2098 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2099 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2100 : ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2101 0 : rs_ctx->rsm->i = i;
2102 : /* no need to save R, already pointing to rs_ctx->rsm->R */
2103 : }
2104 : #endif
2105 :
2106 3332 : return ret;
2107 : }
2108 :
2109 : /*
2110 : * Recode the scalar to get constant-time comb multiplication
2111 : *
2112 : * As the actual scalar recoding needs an odd scalar as a starting point,
2113 : * this wrapper ensures that by replacing m by N - m if necessary, and
2114 : * informs the caller that the result of multiplication will be negated.
2115 : *
2116 : * This works because we only support large prime order for Short Weierstrass
2117 : * curves, so N is always odd hence either m or N - m is.
2118 : *
2119 : * See ecp_comb_recode_core() for background.
2120 : */
2121 3332 : static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2122 : const mbedtls_mpi *m,
2123 : unsigned char k[COMB_MAX_D + 1],
2124 : size_t d,
2125 : unsigned char w,
2126 : unsigned char *parity_trick)
2127 : {
2128 3332 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2129 : mbedtls_mpi M, mm;
2130 :
2131 3332 : mbedtls_mpi_init(&M);
2132 3332 : mbedtls_mpi_init(&mm);
2133 :
2134 : /* N is always odd (see above), just make extra sure */
2135 3332 : if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2136 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2137 : }
2138 :
2139 : /* do we need the parity trick? */
2140 3332 : *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2141 :
2142 : /* execute parity fix in constant time */
2143 3332 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2144 3332 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2145 3332 : MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2146 :
2147 : /* actual scalar recoding */
2148 3332 : ecp_comb_recode_core(k, d, w, &M);
2149 :
2150 3332 : cleanup:
2151 3332 : mbedtls_mpi_free(&mm);
2152 3332 : mbedtls_mpi_free(&M);
2153 :
2154 3332 : return ret;
2155 : }
2156 :
2157 : /*
2158 : * Perform comb multiplication (for short Weierstrass curves)
2159 : * once the auxiliary table has been pre-computed.
2160 : *
2161 : * Scalar recoding may use a parity trick that makes us compute -m * P,
2162 : * if that is the case we'll need to recover m * P at the end.
2163 : */
2164 3332 : static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2165 : mbedtls_ecp_point *R,
2166 : const mbedtls_mpi *m,
2167 : const mbedtls_ecp_point *T,
2168 : unsigned char T_size,
2169 : unsigned char w,
2170 : size_t d,
2171 : int (*f_rng)(void *, unsigned char *, size_t),
2172 : void *p_rng,
2173 : mbedtls_ecp_restart_ctx *rs_ctx)
2174 : {
2175 3332 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176 : unsigned char parity_trick;
2177 : unsigned char k[COMB_MAX_D + 1];
2178 3332 : mbedtls_ecp_point *RR = R;
2179 :
2180 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2181 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2182 0 : RR = &rs_ctx->rsm->R;
2183 :
2184 0 : if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2185 0 : goto final_norm;
2186 : }
2187 : }
2188 : #endif
2189 :
2190 3332 : MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2191 : &parity_trick));
2192 3332 : MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2193 : f_rng, p_rng, rs_ctx));
2194 3332 : MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2195 :
2196 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2197 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2198 0 : rs_ctx->rsm->state = ecp_rsm_final_norm;
2199 : }
2200 :
2201 3332 : final_norm:
2202 3332 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2203 : #endif
2204 : /*
2205 : * Knowledge of the jacobian coordinates may leak the last few bits of the
2206 : * scalar [1], and since our MPI implementation isn't constant-flow,
2207 : * inversion (used for coordinate normalization) may leak the full value
2208 : * of its input via side-channels [2].
2209 : *
2210 : * [1] https://eprint.iacr.org/2003/191
2211 : * [2] https://eprint.iacr.org/2020/055
2212 : *
2213 : * Avoid the leak by randomizing coordinates before we normalize them.
2214 : */
2215 3332 : if (f_rng != 0) {
2216 390 : MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2217 : }
2218 :
2219 3332 : MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2220 :
2221 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2222 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2223 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2224 : }
2225 : #endif
2226 :
2227 3332 : cleanup:
2228 3332 : return ret;
2229 : }
2230 :
2231 : /*
2232 : * Pick window size based on curve size and whether we optimize for base point
2233 : */
2234 3332 : static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2235 : unsigned char p_eq_g)
2236 : {
2237 : unsigned char w;
2238 :
2239 : /*
2240 : * Minimize the number of multiplications, that is minimize
2241 : * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2242 : * (see costs of the various parts, with 1S = 1M)
2243 : */
2244 3332 : w = grp->nbits >= 384 ? 5 : 4;
2245 :
2246 : /*
2247 : * If P == G, pre-compute a bit more, since this may be re-used later.
2248 : * Just adding one avoids upping the cost of the first mul too much,
2249 : * and the memory cost too.
2250 : */
2251 3332 : if (p_eq_g) {
2252 1786 : w++;
2253 : }
2254 :
2255 : /*
2256 : * If static comb table may not be used (!p_eq_g) or static comb table does
2257 : * not exists, make sure w is within bounds.
2258 : * (The last test is useful only for very small curves in the test suite.)
2259 : *
2260 : * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2261 : * static comb table, because the size of static comb table is fixed when
2262 : * it is generated.
2263 : */
2264 : #if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2265 3332 : if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2266 0 : w = MBEDTLS_ECP_WINDOW_SIZE;
2267 : }
2268 : #endif
2269 3332 : if (w >= grp->nbits) {
2270 0 : w = 2;
2271 : }
2272 :
2273 3332 : return w;
2274 : }
2275 :
2276 : /*
2277 : * Multiplication using the comb method - for curves in short Weierstrass form
2278 : *
2279 : * This function is mainly responsible for administrative work:
2280 : * - managing the restart context if enabled
2281 : * - managing the table of precomputed points (passed between the below two
2282 : * functions): allocation, computation, ownership transfer, freeing.
2283 : *
2284 : * It delegates the actual arithmetic work to:
2285 : * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2286 : *
2287 : * See comments on ecp_comb_recode_core() regarding the computation strategy.
2288 : */
2289 3332 : static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2290 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2291 : int (*f_rng)(void *, unsigned char *, size_t),
2292 : void *p_rng,
2293 : mbedtls_ecp_restart_ctx *rs_ctx)
2294 : {
2295 3332 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2296 : unsigned char w, p_eq_g, i;
2297 : size_t d;
2298 3332 : unsigned char T_size = 0, T_ok = 0;
2299 3332 : mbedtls_ecp_point *T = NULL;
2300 :
2301 3332 : ECP_RS_ENTER(rsm);
2302 :
2303 : /* Is P the base point ? */
2304 : #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2305 5118 : p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2306 1786 : MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2307 : #else
2308 : p_eq_g = 0;
2309 : #endif
2310 :
2311 : /* Pick window size and deduce related sizes */
2312 3332 : w = ecp_pick_window_size(grp, p_eq_g);
2313 3332 : T_size = 1U << (w - 1);
2314 3332 : d = (grp->nbits + w - 1) / w;
2315 :
2316 : /* Pre-computed table: do we have it already for the base point? */
2317 3332 : if (p_eq_g && grp->T != NULL) {
2318 : /* second pointer to the same table, will be deleted on exit */
2319 1786 : T = grp->T;
2320 1786 : T_ok = 1;
2321 : } else
2322 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2323 : /* Pre-computed table: do we have one in progress? complete? */
2324 1546 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2325 : /* transfer ownership of T from rsm to local function */
2326 0 : T = rs_ctx->rsm->T;
2327 0 : rs_ctx->rsm->T = NULL;
2328 0 : rs_ctx->rsm->T_size = 0;
2329 :
2330 : /* This effectively jumps to the call to mul_comb_after_precomp() */
2331 0 : T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2332 : } else
2333 : #endif
2334 : /* Allocate table if we didn't have any */
2335 : {
2336 1546 : T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2337 1546 : if (T == NULL) {
2338 0 : ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2339 0 : goto cleanup;
2340 : }
2341 :
2342 13914 : for (i = 0; i < T_size; i++) {
2343 12368 : mbedtls_ecp_point_init(&T[i]);
2344 : }
2345 :
2346 1546 : T_ok = 0;
2347 : }
2348 :
2349 : /* Compute table (or finish computing it) if not done already */
2350 3332 : if (!T_ok) {
2351 1546 : MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2352 :
2353 1546 : if (p_eq_g) {
2354 : /* almost transfer ownership of T to the group, but keep a copy of
2355 : * the pointer to use for calling the next function more easily */
2356 0 : grp->T = T;
2357 0 : grp->T_size = T_size;
2358 : }
2359 : }
2360 :
2361 : /* Actual comb multiplication using precomputed points */
2362 3332 : MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2363 : T, T_size, w, d,
2364 : f_rng, p_rng, rs_ctx));
2365 :
2366 3332 : cleanup:
2367 :
2368 : /* does T belong to the group? */
2369 3332 : if (T == grp->T) {
2370 1786 : T = NULL;
2371 : }
2372 :
2373 : /* does T belong to the restart context? */
2374 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2375 3332 : if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2376 : /* transfer ownership of T from local function to rsm */
2377 0 : rs_ctx->rsm->T_size = T_size;
2378 0 : rs_ctx->rsm->T = T;
2379 0 : T = NULL;
2380 : }
2381 : #endif
2382 :
2383 : /* did T belong to us? then let's destroy it! */
2384 3332 : if (T != NULL) {
2385 13914 : for (i = 0; i < T_size; i++) {
2386 12368 : mbedtls_ecp_point_free(&T[i]);
2387 : }
2388 1546 : mbedtls_free(T);
2389 : }
2390 :
2391 : /* prevent caller from using invalid value */
2392 3332 : int should_free_R = (ret != 0);
2393 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2394 : /* don't free R while in progress in case R == P */
2395 3332 : if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2396 0 : should_free_R = 0;
2397 : }
2398 : #endif
2399 3332 : if (should_free_R) {
2400 0 : mbedtls_ecp_point_free(R);
2401 : }
2402 :
2403 3332 : ECP_RS_LEAVE(rsm);
2404 :
2405 3332 : return ret;
2406 : }
2407 :
2408 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2409 :
2410 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2411 : /*
2412 : * For Montgomery curves, we do all the internal arithmetic in projective
2413 : * coordinates. Import/export of points uses only the x coordinates, which is
2414 : * internally represented as X / Z.
2415 : *
2416 : * For scalar multiplication, we'll use a Montgomery ladder.
2417 : */
2418 :
2419 : /*
2420 : * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2421 : * Cost: 1M + 1I
2422 : */
2423 0 : static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2424 : {
2425 : #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2426 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2427 : return mbedtls_internal_ecp_normalize_mxz(grp, P);
2428 : }
2429 : #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2430 :
2431 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2432 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2433 : #else
2434 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435 0 : MPI_ECP_INV(&P->Z, &P->Z);
2436 0 : MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2437 0 : MPI_ECP_LSET(&P->Z, 1);
2438 :
2439 0 : cleanup:
2440 0 : return ret;
2441 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2442 : }
2443 :
2444 : /*
2445 : * Randomize projective x/z coordinates:
2446 : * (X, Z) -> (l X, l Z) for random l
2447 : * This is sort of the reverse operation of ecp_normalize_mxz().
2448 : *
2449 : * This countermeasure was first suggested in [2].
2450 : * Cost: 2M
2451 : */
2452 0 : static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2453 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2454 : {
2455 : #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2456 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2457 : return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2458 : }
2459 : #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2460 :
2461 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2462 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2463 : #else
2464 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2465 : mbedtls_mpi l;
2466 0 : mbedtls_mpi_init(&l);
2467 :
2468 : /* Generate l such that 1 < l < p */
2469 0 : MPI_ECP_RAND(&l);
2470 :
2471 0 : MPI_ECP_MUL(&P->X, &P->X, &l);
2472 0 : MPI_ECP_MUL(&P->Z, &P->Z, &l);
2473 :
2474 0 : cleanup:
2475 0 : mbedtls_mpi_free(&l);
2476 :
2477 0 : if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2478 0 : ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2479 : }
2480 0 : return ret;
2481 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2482 : }
2483 :
2484 : /*
2485 : * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2486 : * for Montgomery curves in x/z coordinates.
2487 : *
2488 : * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2489 : * with
2490 : * d = X1
2491 : * P = (X2, Z2)
2492 : * Q = (X3, Z3)
2493 : * R = (X4, Z4)
2494 : * S = (X5, Z5)
2495 : * and eliminating temporary variables tO, ..., t4.
2496 : *
2497 : * Cost: 5M + 4S
2498 : */
2499 0 : static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2500 : mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2501 : const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2502 : const mbedtls_mpi *d,
2503 : mbedtls_mpi T[4])
2504 : {
2505 : #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2506 : if (mbedtls_internal_ecp_grp_capable(grp)) {
2507 : return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2508 : }
2509 : #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2510 :
2511 : #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2512 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2513 : #else
2514 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2515 :
2516 0 : MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
2517 0 : MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
2518 0 : MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
2519 0 : MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
2520 0 : MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
2521 0 : MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
2522 0 : MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
2523 0 : MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
2524 0 : MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
2525 0 : MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
2526 0 : MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
2527 0 : MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
2528 0 : MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
2529 0 : MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
2530 0 : MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
2531 0 : MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
2532 0 : MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
2533 0 : MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2534 :
2535 0 : cleanup:
2536 :
2537 0 : return ret;
2538 : #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2539 : }
2540 :
2541 : /*
2542 : * Multiplication with Montgomery ladder in x/z coordinates,
2543 : * for curves in Montgomery form
2544 : */
2545 0 : static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2546 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2547 : int (*f_rng)(void *, unsigned char *, size_t),
2548 : void *p_rng)
2549 : {
2550 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2551 : size_t i;
2552 : unsigned char b;
2553 : mbedtls_ecp_point RP;
2554 : mbedtls_mpi PX;
2555 : mbedtls_mpi tmp[4];
2556 0 : mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2557 :
2558 0 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2559 :
2560 0 : if (f_rng == NULL) {
2561 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2562 : }
2563 :
2564 : /* Save PX and read from P before writing to R, in case P == R */
2565 0 : MPI_ECP_MOV(&PX, &P->X);
2566 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2567 :
2568 : /* Set R to zero in modified x/z coordinates */
2569 0 : MPI_ECP_LSET(&R->X, 1);
2570 0 : MPI_ECP_LSET(&R->Z, 0);
2571 0 : mbedtls_mpi_free(&R->Y);
2572 :
2573 : /* RP.X might be slightly larger than P, so reduce it */
2574 0 : MOD_ADD(&RP.X);
2575 :
2576 : /* Randomize coordinates of the starting point */
2577 0 : MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2578 :
2579 : /* Loop invariant: R = result so far, RP = R + P */
2580 0 : i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2581 0 : while (i-- > 0) {
2582 0 : b = mbedtls_mpi_get_bit(m, i);
2583 : /*
2584 : * if (b) R = 2R + P else R = 2R,
2585 : * which is:
2586 : * if (b) double_add( RP, R, RP, R )
2587 : * else double_add( R, RP, R, RP )
2588 : * but using safe conditional swaps to avoid leaks
2589 : */
2590 0 : MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2591 0 : MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2592 0 : MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2593 0 : MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2594 0 : MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2595 : }
2596 :
2597 : /*
2598 : * Knowledge of the projective coordinates may leak the last few bits of the
2599 : * scalar [1], and since our MPI implementation isn't constant-flow,
2600 : * inversion (used for coordinate normalization) may leak the full value
2601 : * of its input via side-channels [2].
2602 : *
2603 : * [1] https://eprint.iacr.org/2003/191
2604 : * [2] https://eprint.iacr.org/2020/055
2605 : *
2606 : * Avoid the leak by randomizing coordinates before we normalize them.
2607 : */
2608 0 : MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2609 0 : MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2610 :
2611 0 : cleanup:
2612 0 : mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2613 :
2614 0 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2615 0 : return ret;
2616 : }
2617 :
2618 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2619 :
2620 : /*
2621 : * Restartable multiplication R = m * P
2622 : *
2623 : * This internal function can be called without an RNG in case where we know
2624 : * the inputs are not sensitive.
2625 : */
2626 3332 : static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2627 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2628 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2629 : mbedtls_ecp_restart_ctx *rs_ctx)
2630 : {
2631 3332 : int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2632 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2633 : char is_grp_capable = 0;
2634 : #endif
2635 :
2636 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2637 : /* reset ops count for this call if top-level */
2638 3332 : if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2639 0 : rs_ctx->ops_done = 0;
2640 : }
2641 : #else
2642 : (void) rs_ctx;
2643 : #endif
2644 :
2645 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2646 : if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2647 : MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2648 : }
2649 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2650 :
2651 3332 : int restarting = 0;
2652 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2653 3332 : restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2654 : #endif
2655 : /* skip argument check when restarting */
2656 3332 : if (!restarting) {
2657 : /* check_privkey is free */
2658 3332 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2659 :
2660 : /* Common sanity checks */
2661 3332 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2662 3332 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2663 : }
2664 :
2665 3332 : ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2666 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2667 3332 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2668 0 : MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2669 : }
2670 : #endif
2671 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2672 3332 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2673 3332 : MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2674 : }
2675 : #endif
2676 :
2677 3332 : cleanup:
2678 :
2679 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2680 : if (is_grp_capable) {
2681 : mbedtls_internal_ecp_free(grp);
2682 : }
2683 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2684 :
2685 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2686 3332 : if (rs_ctx != NULL) {
2687 0 : rs_ctx->depth--;
2688 : }
2689 : #endif
2690 :
2691 3332 : return ret;
2692 : }
2693 :
2694 : /*
2695 : * Restartable multiplication R = m * P
2696 : */
2697 390 : int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2698 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2699 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2700 : mbedtls_ecp_restart_ctx *rs_ctx)
2701 : {
2702 390 : if (f_rng == NULL) {
2703 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2704 : }
2705 :
2706 390 : return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2707 : }
2708 :
2709 : /*
2710 : * Multiplication R = m * P
2711 : */
2712 0 : int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2713 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2714 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2715 : {
2716 0 : return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2717 : }
2718 : #endif /* MBEDTLS_ECP_C */
2719 :
2720 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2721 : /*
2722 : * Check that an affine point is valid as a public key,
2723 : * short weierstrass curves (SEC1 3.2.3.1)
2724 : */
2725 14982 : static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2726 : {
2727 14982 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2728 : mbedtls_mpi YY, RHS;
2729 :
2730 : /* pt coordinates must be normalized for our checks */
2731 29964 : if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2732 29964 : mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2733 29964 : mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2734 14982 : mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2735 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
2736 : }
2737 :
2738 14982 : mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2739 :
2740 : /*
2741 : * YY = Y^2
2742 : * RHS = X^3 + A X + B
2743 : */
2744 14982 : MPI_ECP_SQR(&YY, &pt->Y);
2745 14982 : MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2746 :
2747 14982 : if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2748 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2749 : }
2750 :
2751 14982 : cleanup:
2752 :
2753 14982 : mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2754 :
2755 14982 : return ret;
2756 : }
2757 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2758 :
2759 : #if defined(MBEDTLS_ECP_C)
2760 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2761 : /*
2762 : * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2763 : * NOT constant-time - ONLY for short Weierstrass!
2764 : */
2765 2942 : static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2766 : mbedtls_ecp_point *R,
2767 : const mbedtls_mpi *m,
2768 : const mbedtls_ecp_point *P,
2769 : mbedtls_ecp_restart_ctx *rs_ctx)
2770 : {
2771 2942 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2772 : mbedtls_mpi tmp;
2773 2942 : mbedtls_mpi_init(&tmp);
2774 :
2775 2942 : if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2776 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2777 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2778 2942 : } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2779 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2780 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2781 2942 : } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2782 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2784 0 : MPI_ECP_NEG(&R->Y);
2785 : } else {
2786 2942 : MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2787 : NULL, NULL, rs_ctx));
2788 : }
2789 :
2790 2942 : cleanup:
2791 2942 : mbedtls_mpi_free(&tmp);
2792 :
2793 2942 : return ret;
2794 : }
2795 :
2796 : /*
2797 : * Restartable linear combination
2798 : * NOT constant-time
2799 : */
2800 1471 : int mbedtls_ecp_muladd_restartable(
2801 : mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2802 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2803 : const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2804 : mbedtls_ecp_restart_ctx *rs_ctx)
2805 : {
2806 1471 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2807 : mbedtls_ecp_point mP;
2808 1471 : mbedtls_ecp_point *pmP = &mP;
2809 1471 : mbedtls_ecp_point *pR = R;
2810 : mbedtls_mpi tmp[4];
2811 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2812 : char is_grp_capable = 0;
2813 : #endif
2814 1471 : if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2815 0 : return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2816 : }
2817 :
2818 1471 : mbedtls_ecp_point_init(&mP);
2819 1471 : mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2820 :
2821 1471 : ECP_RS_ENTER(ma);
2822 :
2823 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2824 1471 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2825 : /* redirect intermediate results to restart context */
2826 0 : pmP = &rs_ctx->ma->mP;
2827 0 : pR = &rs_ctx->ma->R;
2828 :
2829 : /* jump to next operation */
2830 0 : if (rs_ctx->ma->state == ecp_rsma_mul2) {
2831 0 : goto mul2;
2832 : }
2833 0 : if (rs_ctx->ma->state == ecp_rsma_add) {
2834 0 : goto add;
2835 : }
2836 0 : if (rs_ctx->ma->state == ecp_rsma_norm) {
2837 0 : goto norm;
2838 : }
2839 : }
2840 : #endif /* MBEDTLS_ECP_RESTARTABLE */
2841 :
2842 1471 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2843 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2844 1471 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2845 0 : rs_ctx->ma->state = ecp_rsma_mul2;
2846 : }
2847 :
2848 1471 : mul2:
2849 : #endif
2850 1471 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
2851 :
2852 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2853 : if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2854 : MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2855 : }
2856 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2857 :
2858 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2859 1471 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2860 0 : rs_ctx->ma->state = ecp_rsma_add;
2861 : }
2862 :
2863 1471 : add:
2864 : #endif
2865 1471 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2866 1471 : MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2867 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2868 1471 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2869 0 : rs_ctx->ma->state = ecp_rsma_norm;
2870 : }
2871 :
2872 1471 : norm:
2873 : #endif
2874 1471 : MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2875 1471 : MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2876 :
2877 : #if defined(MBEDTLS_ECP_RESTARTABLE)
2878 1471 : if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2880 : }
2881 : #endif
2882 :
2883 1471 : cleanup:
2884 :
2885 1471 : mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2886 :
2887 : #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2888 : if (is_grp_capable) {
2889 : mbedtls_internal_ecp_free(grp);
2890 : }
2891 : #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2892 :
2893 1471 : mbedtls_ecp_point_free(&mP);
2894 :
2895 1471 : ECP_RS_LEAVE(ma);
2896 :
2897 1471 : return ret;
2898 : }
2899 :
2900 : /*
2901 : * Linear combination
2902 : * NOT constant-time
2903 : */
2904 0 : int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2905 : const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2906 : const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2907 : {
2908 0 : return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2909 : }
2910 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2911 : #endif /* MBEDTLS_ECP_C */
2912 :
2913 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2914 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2915 : #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2916 : #define ECP_MPI_INIT_ARRAY(x) \
2917 : ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2918 : /*
2919 : * Constants for the two points other than 0, 1, -1 (mod p) in
2920 : * https://cr.yp.to/ecdh.html#validate
2921 : * See ecp_check_pubkey_x25519().
2922 : */
2923 : static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2924 : MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2925 : MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2926 : MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2927 : MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2928 : };
2929 : static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2930 : MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2931 : MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2932 : MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2933 : MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2934 : };
2935 : static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2936 : x25519_bad_point_1);
2937 : static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2938 : x25519_bad_point_2);
2939 : #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2940 :
2941 : /*
2942 : * Check that the input point is not one of the low-order points.
2943 : * This is recommended by the "May the Fourth" paper:
2944 : * https://eprint.iacr.org/2017/806.pdf
2945 : * Those points are never sent by an honest peer.
2946 : */
2947 0 : static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2948 : const mbedtls_ecp_group_id grp_id)
2949 : {
2950 : int ret;
2951 : mbedtls_mpi XmP;
2952 :
2953 0 : mbedtls_mpi_init(&XmP);
2954 :
2955 : /* Reduce X mod P so that we only need to check values less than P.
2956 : * We know X < 2^256 so we can proceed by subtraction. */
2957 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2958 0 : while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2959 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2960 : }
2961 :
2962 : /* Check against the known bad values that are less than P. For Curve448
2963 : * these are 0, 1 and -1. For Curve25519 we check the values less than P
2964 : * from the following list: https://cr.yp.to/ecdh.html#validate */
2965 0 : if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
2966 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2967 0 : goto cleanup;
2968 : }
2969 :
2970 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2971 0 : if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2972 0 : if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2973 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2974 0 : goto cleanup;
2975 : }
2976 :
2977 0 : if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2978 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979 0 : goto cleanup;
2980 : }
2981 : }
2982 : #else
2983 : (void) grp_id;
2984 : #endif
2985 :
2986 : /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2987 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2988 0 : if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2989 0 : ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2990 0 : goto cleanup;
2991 : }
2992 :
2993 0 : ret = 0;
2994 :
2995 0 : cleanup:
2996 0 : mbedtls_mpi_free(&XmP);
2997 :
2998 0 : return ret;
2999 : }
3000 :
3001 : /*
3002 : * Check validity of a public key for Montgomery curves with x-only schemes
3003 : */
3004 0 : static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3005 : {
3006 : /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3007 : /* Allow any public value, if it's too big then we'll just reduce it mod p
3008 : * (RFC 7748 sec. 5 para. 3). */
3009 0 : if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3010 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3011 : }
3012 :
3013 : /* Implicit in all standards (as they don't consider negative numbers):
3014 : * X must be non-negative. This is normally ensured by the way it's
3015 : * encoded for transmission, but let's be extra sure. */
3016 0 : if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3017 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3018 : }
3019 :
3020 0 : return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3021 : }
3022 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3023 :
3024 : /*
3025 : * Check that a point is valid as a public key
3026 : */
3027 14982 : int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3028 : const mbedtls_ecp_point *pt)
3029 : {
3030 : /* Must use affine coordinates */
3031 14982 : if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3032 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3033 : }
3034 :
3035 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3036 14982 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3037 0 : return ecp_check_pubkey_mx(grp, pt);
3038 : }
3039 : #endif
3040 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3041 14982 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3042 14982 : return ecp_check_pubkey_sw(grp, pt);
3043 : }
3044 : #endif
3045 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3046 : }
3047 :
3048 : /*
3049 : * Check that an mbedtls_mpi is valid as a private key
3050 : */
3051 3477 : int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3052 : const mbedtls_mpi *d)
3053 : {
3054 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3055 3477 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3056 : /* see RFC 7748 sec. 5 para. 5 */
3057 0 : if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3058 0 : mbedtls_mpi_get_bit(d, 1) != 0 ||
3059 0 : mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
3060 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3061 : }
3062 :
3063 : /* see [Curve25519] page 5 */
3064 0 : if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3065 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3066 : }
3067 :
3068 0 : return 0;
3069 : }
3070 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3071 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3072 3477 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3073 : /* see SEC1 3.2 */
3074 6954 : if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3075 3477 : mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3076 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3077 : } else {
3078 3477 : return 0;
3079 : }
3080 : }
3081 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3082 :
3083 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3084 : }
3085 :
3086 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3087 : MBEDTLS_STATIC_TESTABLE
3088 0 : int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3089 : mbedtls_mpi *d,
3090 : int (*f_rng)(void *, unsigned char *, size_t),
3091 : void *p_rng)
3092 : {
3093 0 : int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094 0 : size_t n_random_bytes = high_bit / 8 + 1;
3095 :
3096 : /* [Curve25519] page 5 */
3097 : /* Generate a (high_bit+1)-bit random number by generating just enough
3098 : * random bytes, then shifting out extra bits from the top (necessary
3099 : * when (high_bit+1) is not a multiple of 8). */
3100 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3101 : f_rng, p_rng));
3102 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3103 :
3104 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3105 :
3106 : /* Make sure the last two bits are unset for Curve448, three bits for
3107 : Curve25519 */
3108 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3109 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3110 0 : if (high_bit == 254) {
3111 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3112 : }
3113 :
3114 0 : cleanup:
3115 0 : return ret;
3116 : }
3117 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3118 :
3119 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3120 462 : static int mbedtls_ecp_gen_privkey_sw(
3121 : const mbedtls_mpi *N, mbedtls_mpi *d,
3122 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3123 : {
3124 462 : int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3125 462 : switch (ret) {
3126 0 : case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3127 0 : return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3128 462 : default:
3129 462 : return ret;
3130 : }
3131 : }
3132 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3133 :
3134 : /*
3135 : * Generate a private key
3136 : */
3137 462 : int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3138 : mbedtls_mpi *d,
3139 : int (*f_rng)(void *, unsigned char *, size_t),
3140 : void *p_rng)
3141 : {
3142 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3143 462 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3144 0 : return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3145 : }
3146 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147 :
3148 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3149 462 : if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3150 462 : return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3151 : }
3152 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3153 :
3154 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3155 : }
3156 :
3157 : #if defined(MBEDTLS_ECP_C)
3158 : /*
3159 : * Generate a keypair with configurable base point
3160 : */
3161 0 : int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3162 : const mbedtls_ecp_point *G,
3163 : mbedtls_mpi *d, mbedtls_ecp_point *Q,
3164 : int (*f_rng)(void *, unsigned char *, size_t),
3165 : void *p_rng)
3166 : {
3167 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3168 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3169 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3170 :
3171 0 : cleanup:
3172 0 : return ret;
3173 : }
3174 :
3175 : /*
3176 : * Generate key pair, wrapper for conventional base point
3177 : */
3178 0 : int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3179 : mbedtls_mpi *d, mbedtls_ecp_point *Q,
3180 : int (*f_rng)(void *, unsigned char *, size_t),
3181 : void *p_rng)
3182 : {
3183 0 : return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3184 : }
3185 :
3186 : /*
3187 : * Generate a keypair, prettier wrapper
3188 : */
3189 0 : int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3190 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3191 : {
3192 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193 0 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3194 0 : return ret;
3195 : }
3196 :
3197 0 : return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3198 : }
3199 : #endif /* MBEDTLS_ECP_C */
3200 :
3201 0 : int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3202 : mbedtls_ecp_keypair *key,
3203 : const mbedtls_ecp_point *Q)
3204 : {
3205 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3206 :
3207 0 : if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3208 : /* Group not set yet */
3209 0 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3210 0 : return ret;
3211 : }
3212 0 : } else if (key->grp.id != grp_id) {
3213 : /* Group mismatch */
3214 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3215 : }
3216 0 : return mbedtls_ecp_copy(&key->Q, Q);
3217 : }
3218 :
3219 :
3220 : #define ECP_CURVE25519_KEY_SIZE 32
3221 : #define ECP_CURVE448_KEY_SIZE 56
3222 : /*
3223 : * Read a private key.
3224 : */
3225 145 : int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3226 : const unsigned char *buf, size_t buflen)
3227 : {
3228 145 : int ret = 0;
3229 :
3230 145 : if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3231 0 : return ret;
3232 : }
3233 :
3234 145 : ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3235 :
3236 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3237 145 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3238 : /*
3239 : * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3240 : */
3241 0 : if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3242 0 : if (buflen != ECP_CURVE25519_KEY_SIZE) {
3243 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3244 : }
3245 :
3246 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3247 :
3248 : /* Set the three least significant bits to 0 */
3249 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3250 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3251 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3252 :
3253 : /* Set the most significant bit to 0 */
3254 0 : MBEDTLS_MPI_CHK(
3255 : mbedtls_mpi_set_bit(&key->d,
3256 : ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3257 : );
3258 :
3259 : /* Set the second most significant bit to 1 */
3260 0 : MBEDTLS_MPI_CHK(
3261 : mbedtls_mpi_set_bit(&key->d,
3262 : ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3263 : );
3264 0 : } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3265 0 : if (buflen != ECP_CURVE448_KEY_SIZE) {
3266 0 : return MBEDTLS_ERR_ECP_INVALID_KEY;
3267 : }
3268 :
3269 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3270 :
3271 : /* Set the two least significant bits to 0 */
3272 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3273 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3274 :
3275 : /* Set the most significant bit to 1 */
3276 0 : MBEDTLS_MPI_CHK(
3277 : mbedtls_mpi_set_bit(&key->d,
3278 : ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3279 : );
3280 : }
3281 : }
3282 : #endif
3283 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3284 145 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3285 145 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3286 : }
3287 : #endif
3288 :
3289 145 : if (ret == 0) {
3290 145 : MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3291 : }
3292 :
3293 145 : cleanup:
3294 :
3295 145 : if (ret != 0) {
3296 0 : mbedtls_mpi_free(&key->d);
3297 : }
3298 :
3299 145 : return ret;
3300 : }
3301 :
3302 : /*
3303 : * Write a private key.
3304 : */
3305 : #if !defined MBEDTLS_DEPRECATED_REMOVED
3306 0 : int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3307 : unsigned char *buf, size_t buflen)
3308 : {
3309 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3310 :
3311 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3312 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3313 0 : if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3314 0 : if (buflen < ECP_CURVE25519_KEY_SIZE) {
3315 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3316 : }
3317 :
3318 0 : } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3319 0 : if (buflen < ECP_CURVE448_KEY_SIZE) {
3320 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3321 : }
3322 : }
3323 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3324 : }
3325 : #endif
3326 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3327 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3328 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3329 : }
3330 :
3331 : #endif
3332 0 : cleanup:
3333 :
3334 0 : return ret;
3335 : }
3336 : #endif /* MBEDTLS_DEPRECATED_REMOVED */
3337 :
3338 0 : int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3339 : size_t *olen, unsigned char *buf, size_t buflen)
3340 : {
3341 0 : size_t len = (key->grp.nbits + 7) / 8;
3342 0 : if (len > buflen) {
3343 : /* For robustness, ensure *olen <= buflen even on error. */
3344 0 : *olen = 0;
3345 0 : return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3346 : }
3347 0 : *olen = len;
3348 :
3349 : /* Private key not set */
3350 0 : if (key->d.n == 0) {
3351 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3352 : }
3353 :
3354 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3355 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3356 0 : return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3357 : }
3358 : #endif
3359 :
3360 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3361 0 : if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3362 0 : return mbedtls_mpi_write_binary(&key->d, buf, len);
3363 : }
3364 : #endif
3365 :
3366 : /* Private key set but no recognized curve type? This shouldn't happen. */
3367 0 : return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368 : }
3369 :
3370 : /*
3371 : * Write a public key.
3372 : */
3373 0 : int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3374 : int format, size_t *olen,
3375 : unsigned char *buf, size_t buflen)
3376 : {
3377 0 : return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3378 : format, olen, buf, buflen);
3379 : }
3380 :
3381 :
3382 : #if defined(MBEDTLS_ECP_C)
3383 : /*
3384 : * Check a public-private key pair
3385 : */
3386 0 : int mbedtls_ecp_check_pub_priv(
3387 : const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3388 : int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3389 : {
3390 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3391 : mbedtls_ecp_point Q;
3392 : mbedtls_ecp_group grp;
3393 0 : if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3394 0 : pub->grp.id != prv->grp.id ||
3395 0 : mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3396 0 : mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3397 0 : mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3398 0 : return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3399 : }
3400 :
3401 0 : mbedtls_ecp_point_init(&Q);
3402 0 : mbedtls_ecp_group_init(&grp);
3403 :
3404 : /* mbedtls_ecp_mul() needs a non-const group... */
3405 0 : mbedtls_ecp_group_copy(&grp, &prv->grp);
3406 :
3407 : /* Also checks d is valid */
3408 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3409 :
3410 0 : if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3411 0 : mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3412 0 : mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3413 0 : ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3414 0 : goto cleanup;
3415 : }
3416 :
3417 0 : cleanup:
3418 0 : mbedtls_ecp_point_free(&Q);
3419 0 : mbedtls_ecp_group_free(&grp);
3420 :
3421 0 : return ret;
3422 : }
3423 :
3424 0 : int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3425 : int (*f_rng)(void *, unsigned char *, size_t),
3426 : void *p_rng)
3427 : {
3428 0 : return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3429 : f_rng, p_rng);
3430 : }
3431 : #endif /* MBEDTLS_ECP_C */
3432 :
3433 0 : mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3434 : const mbedtls_ecp_keypair *key)
3435 : {
3436 0 : return key->grp.id;
3437 : }
3438 :
3439 : /*
3440 : * Export generic key-pair parameters.
3441 : */
3442 0 : int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3443 : mbedtls_mpi *d, mbedtls_ecp_point *Q)
3444 : {
3445 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3446 :
3447 0 : if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3448 0 : return ret;
3449 : }
3450 :
3451 0 : if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3452 0 : return ret;
3453 : }
3454 :
3455 0 : if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3456 0 : return ret;
3457 : }
3458 :
3459 0 : return 0;
3460 : }
3461 :
3462 : #if defined(MBEDTLS_SELF_TEST)
3463 :
3464 : #if defined(MBEDTLS_ECP_C)
3465 : /*
3466 : * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3467 : *
3468 : * This is the linear congruential generator from numerical recipes,
3469 : * except we only use the low byte as the output. See
3470 : * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3471 : */
3472 0 : static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3473 : {
3474 : static uint32_t state = 42;
3475 :
3476 : (void) ctx;
3477 :
3478 0 : for (size_t i = 0; i < len; i++) {
3479 0 : state = state * 1664525u + 1013904223u;
3480 0 : out[i] = (unsigned char) state;
3481 : }
3482 :
3483 0 : return 0;
3484 : }
3485 :
3486 : /* Adjust the exponent to be a valid private point for the specified curve.
3487 : * This is sometimes necessary because we use a single set of exponents
3488 : * for all curves but the validity of values depends on the curve. */
3489 0 : static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3490 : mbedtls_mpi *m)
3491 : {
3492 0 : int ret = 0;
3493 0 : switch (grp->id) {
3494 : /* If Curve25519 is available, then that's what we use for the
3495 : * Montgomery test, so we don't need the adjustment code. */
3496 : #if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3497 : #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3498 : case MBEDTLS_ECP_DP_CURVE448:
3499 : /* Move highest bit from 254 to N-1. Setting bit N-1 is
3500 : * necessary to enforce the highest-bit-set constraint. */
3501 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3502 : MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3503 : /* Copy second-highest bit from 253 to N-2. This is not
3504 : * necessary but improves the test variety a bit. */
3505 : MBEDTLS_MPI_CHK(
3506 : mbedtls_mpi_set_bit(m, grp->nbits - 1,
3507 : mbedtls_mpi_get_bit(m, 253)));
3508 : break;
3509 : #endif
3510 : #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3511 : default:
3512 : /* Non-Montgomery curves and Curve25519 need no adjustment. */
3513 : (void) grp;
3514 : (void) m;
3515 0 : goto cleanup;
3516 : }
3517 0 : cleanup:
3518 0 : return ret;
3519 : }
3520 :
3521 : /* Calculate R = m.P for each m in exponents. Check that the number of
3522 : * basic operations doesn't depend on the value of m. */
3523 0 : static int self_test_point(int verbose,
3524 : mbedtls_ecp_group *grp,
3525 : mbedtls_ecp_point *R,
3526 : mbedtls_mpi *m,
3527 : const mbedtls_ecp_point *P,
3528 : const char *const *exponents,
3529 : size_t n_exponents)
3530 : {
3531 0 : int ret = 0;
3532 0 : size_t i = 0;
3533 : unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3534 0 : add_count = 0;
3535 0 : dbl_count = 0;
3536 0 : mul_count = 0;
3537 :
3538 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3539 0 : MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3540 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3541 :
3542 0 : for (i = 1; i < n_exponents; i++) {
3543 0 : add_c_prev = add_count;
3544 0 : dbl_c_prev = dbl_count;
3545 0 : mul_c_prev = mul_count;
3546 0 : add_count = 0;
3547 0 : dbl_count = 0;
3548 0 : mul_count = 0;
3549 :
3550 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3551 0 : MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3552 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3553 :
3554 0 : if (add_count != add_c_prev ||
3555 0 : dbl_count != dbl_c_prev ||
3556 0 : mul_count != mul_c_prev) {
3557 0 : ret = 1;
3558 0 : break;
3559 : }
3560 : }
3561 :
3562 0 : cleanup:
3563 0 : if (verbose != 0) {
3564 0 : if (ret != 0) {
3565 0 : mbedtls_printf("failed (%u)\n", (unsigned int) i);
3566 : } else {
3567 0 : mbedtls_printf("passed\n");
3568 : }
3569 : }
3570 0 : return ret;
3571 : }
3572 : #endif /* MBEDTLS_ECP_C */
3573 :
3574 : /*
3575 : * Checkup routine
3576 : */
3577 0 : int mbedtls_ecp_self_test(int verbose)
3578 : {
3579 : #if defined(MBEDTLS_ECP_C)
3580 0 : int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3581 : mbedtls_ecp_group grp;
3582 : mbedtls_ecp_point R, P;
3583 : mbedtls_mpi m;
3584 :
3585 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3586 : /* Exponents especially adapted for secp192k1, which has the lowest
3587 : * order n of all supported curves (secp192r1 is in a slightly larger
3588 : * field but the order of its base point is slightly smaller). */
3589 0 : const char *sw_exponents[] =
3590 : {
3591 : "000000000000000000000000000000000000000000000001", /* one */
3592 : "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3593 : "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3594 : "400000000000000000000000000000000000000000000000", /* one and zeros */
3595 : "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3596 : "555555555555555555555555555555555555555555555555", /* 101010... */
3597 : };
3598 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3599 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3600 0 : const char *m_exponents[] =
3601 : {
3602 : /* Valid private values for Curve25519. In a build with Curve448
3603 : * but not Curve25519, they will be adjusted in
3604 : * self_test_adjust_exponent(). */
3605 : "4000000000000000000000000000000000000000000000000000000000000000",
3606 : "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3607 : "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3608 : "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3609 : "5555555555555555555555555555555555555555555555555555555555555550",
3610 : "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3611 : };
3612 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3613 :
3614 0 : mbedtls_ecp_group_init(&grp);
3615 0 : mbedtls_ecp_point_init(&R);
3616 0 : mbedtls_ecp_point_init(&P);
3617 0 : mbedtls_mpi_init(&m);
3618 :
3619 : #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3620 : /* Use secp192r1 if available, or any available curve */
3621 : #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3622 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3623 : #else
3624 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3625 : #endif
3626 :
3627 0 : if (verbose != 0) {
3628 0 : mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
3629 : }
3630 : /* Do a dummy multiplication first to trigger precomputation */
3631 0 : MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3632 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3633 0 : ret = self_test_point(verbose,
3634 : &grp, &R, &m, &grp.G,
3635 : sw_exponents,
3636 : sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3637 0 : if (ret != 0) {
3638 0 : goto cleanup;
3639 : }
3640 :
3641 0 : if (verbose != 0) {
3642 0 : mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
3643 : }
3644 : /* We computed P = 2G last time, use it */
3645 0 : ret = self_test_point(verbose,
3646 : &grp, &R, &m, &P,
3647 : sw_exponents,
3648 : sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3649 0 : if (ret != 0) {
3650 0 : goto cleanup;
3651 : }
3652 :
3653 0 : mbedtls_ecp_group_free(&grp);
3654 0 : mbedtls_ecp_point_free(&R);
3655 : #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3656 :
3657 : #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3658 0 : if (verbose != 0) {
3659 0 : mbedtls_printf(" ECP Montgomery test (constant op_count): ");
3660 : }
3661 : #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3662 0 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3663 : #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3664 : MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3665 : #else
3666 : #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3667 : #endif
3668 0 : ret = self_test_point(verbose,
3669 : &grp, &R, &m, &grp.G,
3670 : m_exponents,
3671 : sizeof(m_exponents) / sizeof(m_exponents[0]));
3672 0 : if (ret != 0) {
3673 0 : goto cleanup;
3674 : }
3675 : #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3676 :
3677 0 : cleanup:
3678 :
3679 0 : if (ret < 0 && verbose != 0) {
3680 0 : mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3681 : }
3682 :
3683 0 : mbedtls_ecp_group_free(&grp);
3684 0 : mbedtls_ecp_point_free(&R);
3685 0 : mbedtls_ecp_point_free(&P);
3686 0 : mbedtls_mpi_free(&m);
3687 :
3688 0 : if (verbose != 0) {
3689 0 : mbedtls_printf("\n");
3690 : }
3691 :
3692 0 : return ret;
3693 : #else /* MBEDTLS_ECP_C */
3694 : (void) verbose;
3695 : return 0;
3696 : #endif /* MBEDTLS_ECP_C */
3697 : }
3698 :
3699 : #endif /* MBEDTLS_SELF_TEST */
3700 :
3701 : #endif /* !MBEDTLS_ECP_ALT */
3702 :
3703 : #endif /* MBEDTLS_ECP_LIGHT */
|