LCOV - code coverage report
Current view: top level - os_stub/mbedtlslib/mbedtls/library - aesni.c (source / functions) Coverage Total Hit
Test: coverage.info Lines: 68.3 % 41 28
Test Date: 2025-06-29 08:09:00 Functions: 75.0 % 8 6

            Line data    Source code
       1              : /*
       2              :  *  AES-NI support functions
       3              :  *
       4              :  *  Copyright The Mbed TLS Contributors
       5              :  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
       6              :  */
       7              : 
       8              : /*
       9              :  * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
      10              :  * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
      11              :  */
      12              : 
      13              : #include "common.h"
      14              : 
      15              : #if defined(MBEDTLS_AESNI_C)
      16              : 
      17              : #include "aesni.h"
      18              : 
      19              : #include <string.h>
      20              : 
      21              : #if defined(MBEDTLS_AESNI_HAVE_CODE)
      22              : 
      23              : #if MBEDTLS_AESNI_HAVE_CODE == 2
      24              : #if defined(__GNUC__)
      25              : #include <cpuid.h>
      26              : #elif defined(_MSC_VER)
      27              : #include <intrin.h>
      28              : #else
      29              : #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
      30              : #endif
      31              : #include <immintrin.h>
      32              : #endif
      33              : 
      34              : #if defined(MBEDTLS_ARCH_IS_X86)
      35              : #if defined(MBEDTLS_COMPILER_IS_GCC)
      36              : #pragma GCC push_options
      37              : #pragma GCC target ("pclmul,sse2,aes")
      38              : #define MBEDTLS_POP_TARGET_PRAGMA
      39              : #elif defined(__clang__) && (__clang_major__ >= 5)
      40              : #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
      41              : #define MBEDTLS_POP_TARGET_PRAGMA
      42              : #endif
      43              : #endif
      44              : 
      45              : #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
      46              : /*
      47              :  * AES-NI support detection routine
      48              :  */
      49         5210 : int mbedtls_aesni_has_support(unsigned int what)
      50              : {
      51              :     static int done = 0;
      52              :     static unsigned int c = 0;
      53              : 
      54         5210 :     if (!done) {
      55              : #if MBEDTLS_AESNI_HAVE_CODE == 2
      56              :         static int info[4] = { 0, 0, 0, 0 };
      57              : #if defined(_MSC_VER)
      58              :         __cpuid(info, 1);
      59              : #else
      60              :         __cpuid(1, info[0], info[1], info[2], info[3]);
      61              : #endif
      62              :         c = info[2];
      63              : #else /* AESNI using asm */
      64            2 :         asm ("movl  $1, %%eax   \n\t"
      65              :              "cpuid             \n\t"
      66              :              : "=c" (c)
      67              :              :
      68              :              : "eax", "ebx", "edx");
      69              : #endif /* MBEDTLS_AESNI_HAVE_CODE */
      70            2 :         done = 1;
      71              :     }
      72              : 
      73         5210 :     return (c & what) != 0;
      74              : }
      75              : #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
      76              : 
      77              : #if MBEDTLS_AESNI_HAVE_CODE == 2
      78              : 
      79              : /*
      80              :  * AES-NI AES-ECB block en(de)cryption
      81              :  */
      82              : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
      83              :                             int mode,
      84              :                             const unsigned char input[16],
      85              :                             unsigned char output[16])
      86              : {
      87              :     const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
      88              :     unsigned nr = ctx->nr; // Number of remaining rounds
      89              : 
      90              :     // Load round key 0
      91              :     __m128i state;
      92              :     memcpy(&state, input, 16);
      93              :     state = _mm_xor_si128(state, rk[0]);  // state ^= *rk;
      94              :     ++rk;
      95              :     --nr;
      96              : 
      97              : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
      98              :     if (mode == MBEDTLS_AES_DECRYPT) {
      99              :         while (nr != 0) {
     100              :             state = _mm_aesdec_si128(state, *rk);
     101              :             ++rk;
     102              :             --nr;
     103              :         }
     104              :         state = _mm_aesdeclast_si128(state, *rk);
     105              :     } else
     106              : #else
     107              :     (void) mode;
     108              : #endif
     109              :     {
     110              :         while (nr != 0) {
     111              :             state = _mm_aesenc_si128(state, *rk);
     112              :             ++rk;
     113              :             --nr;
     114              :         }
     115              :         state = _mm_aesenclast_si128(state, *rk);
     116              :     }
     117              : 
     118              :     memcpy(output, &state, 16);
     119              :     return 0;
     120              : }
     121              : 
     122              : /*
     123              :  * GCM multiplication: c = a times b in GF(2^128)
     124              :  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
     125              :  */
     126              : 
     127              : static void gcm_clmul(const __m128i aa, const __m128i bb,
     128              :                       __m128i *cc, __m128i *dd)
     129              : {
     130              :     /*
     131              :      * Caryless multiplication dd:cc = aa * bb
     132              :      * using [CLMUL-WP] algorithm 1 (p. 12).
     133              :      */
     134              :     *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
     135              :     *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
     136              :     __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
     137              :     __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
     138              :     ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0
     139              :     ee = ff;                                         // e1+f1:e0+f0
     140              :     ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1
     141              :     ee = _mm_slli_si128(ee, 8);                      // e0+f0:0
     142              :     *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1
     143              :     *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0
     144              : }
     145              : 
     146              : static void gcm_shift(__m128i *cc, __m128i *dd)
     147              : {
     148              :     /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
     149              :      * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
     150              :     //                                        // *cc = r1:r0
     151              :     //                                        // *dd = r3:r2
     152              :     __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1
     153              :     __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1
     154              :     __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63
     155              :     __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63
     156              :     __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63
     157              :     cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0
     158              :     dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63
     159              : 
     160              :     *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1
     161              :     *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
     162              : }
     163              : 
     164              : static __m128i gcm_reduce(__m128i xx)
     165              : {
     166              :     //                                            // xx = x1:x0
     167              :     /* [CLMUL-WP] Algorithm 5 Step 2 */
     168              :     __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a
     169              :     __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b
     170              :     __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c
     171              :     __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
     172              :     return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0
     173              : }
     174              : 
     175              : static __m128i gcm_mix(__m128i dx)
     176              : {
     177              :     /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
     178              :     __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0'
     179              :     __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0'
     180              :     __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0'
     181              : 
     182              :     // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
     183              :     // bits carried from d. Now get those bits back in.
     184              :     __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff
     185              :     __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff
     186              :     __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff
     187              :     __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
     188              : 
     189              :     return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
     190              : }
     191              : 
     192              : void mbedtls_aesni_gcm_mult(unsigned char c[16],
     193              :                             const unsigned char a[16],
     194              :                             const unsigned char b[16])
     195              : {
     196              :     __m128i aa = { 0 }, bb = { 0 }, cc, dd;
     197              : 
     198              :     /* The inputs are in big-endian order, so byte-reverse them */
     199              :     for (size_t i = 0; i < 16; i++) {
     200              :         ((uint8_t *) &aa)[i] = a[15 - i];
     201              :         ((uint8_t *) &bb)[i] = b[15 - i];
     202              :     }
     203              : 
     204              :     gcm_clmul(aa, bb, &cc, &dd);
     205              :     gcm_shift(&cc, &dd);
     206              :     /*
     207              :      * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
     208              :      * using [CLMUL-WP] algorithm 5 (p. 18).
     209              :      * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
     210              :      */
     211              :     __m128i dx = gcm_reduce(cc);
     212              :     __m128i xh = gcm_mix(dx);
     213              :     cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
     214              : 
     215              :     /* Now byte-reverse the outputs */
     216              :     for (size_t i = 0; i < 16; i++) {
     217              :         c[i] = ((uint8_t *) &cc)[15 - i];
     218              :     }
     219              : 
     220              :     return;
     221              : }
     222              : 
     223              : /*
     224              :  * Compute decryption round keys from encryption round keys
     225              :  */
     226              : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
     227              : void mbedtls_aesni_inverse_key(unsigned char *invkey,
     228              :                                const unsigned char *fwdkey, int nr)
     229              : {
     230              :     __m128i *ik = (__m128i *) invkey;
     231              :     const __m128i *fk = (const __m128i *) fwdkey + nr;
     232              : 
     233              :     *ik = *fk;
     234              :     for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
     235              :         *ik = _mm_aesimc_si128(*fk);
     236              :     }
     237              :     *ik = *fk;
     238              : }
     239              : #endif
     240              : 
     241              : /*
     242              :  * Key expansion, 128-bit case
     243              :  */
     244              : static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
     245              : {
     246              :     /*
     247              :      * Finish generating the next round key.
     248              :      *
     249              :      * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
     250              :      * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
     251              :      *
     252              :      * On exit, xword is r7:r6:r5:r4
     253              :      * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
     254              :      * and this is returned, to be written to the round key buffer.
     255              :      */
     256              :     xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X
     257              :     xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4
     258              :     state = _mm_slli_si128(state, 4);         // r2:r1:r0:0
     259              :     xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4
     260              :     state = _mm_slli_si128(state, 4);         // r1:r0:0:0
     261              :     xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4
     262              :     state = _mm_slli_si128(state, 4);         // r0:0:0:0
     263              :     state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4
     264              :     return state;
     265              : }
     266              : 
     267              : static void aesni_setkey_enc_128(unsigned char *rk_bytes,
     268              :                                  const unsigned char *key)
     269              : {
     270              :     __m128i *rk = (__m128i *) rk_bytes;
     271              : 
     272              :     memcpy(&rk[0], key, 16);
     273              :     rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
     274              :     rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
     275              :     rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
     276              :     rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
     277              :     rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
     278              :     rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
     279              :     rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
     280              :     rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
     281              :     rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
     282              :     rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
     283              : }
     284              : 
     285              : /*
     286              :  * Key expansion, 192-bit case
     287              :  */
     288              : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
     289              : static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
     290              :                              unsigned char *rk)
     291              : {
     292              :     /*
     293              :      * Finish generating the next 6 quarter-keys.
     294              :      *
     295              :      * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
     296              :      * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
     297              :      * (obtained with AESKEYGENASSIST).
     298              :      *
     299              :      * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
     300              :      * and those are written to the round key buffer.
     301              :      */
     302              :     xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X
     303              :     xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0
     304              :     *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0
     305              :     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
     306              :     *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0
     307              :     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
     308              :     *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0
     309              :     xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
     310              :     *state0 = xword;                          // = r9:r8:r7:r6
     311              : 
     312              :     xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9
     313              :     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4
     314              :     *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0
     315              :     xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4
     316              :     *state1 = xword;                          // = stuff:stuff:r11:r10
     317              : 
     318              :     /* Store state0 and the low half of state1 into rk, which is conceptually
     319              :      * an array of 24-byte elements. Since 24 is not a multiple of 16,
     320              :      * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
     321              :     memcpy(rk, state0, 16);
     322              :     memcpy(rk + 16, state1, 8);
     323              : }
     324              : 
     325              : static void aesni_setkey_enc_192(unsigned char *rk,
     326              :                                  const unsigned char *key)
     327              : {
     328              :     /* First round: use original key */
     329              :     memcpy(rk, key, 24);
     330              :     /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
     331              :     __m128i state0 = ((__m128i *) rk)[0];
     332              :     __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
     333              : 
     334              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
     335              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
     336              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
     337              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
     338              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
     339              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
     340              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
     341              :     aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
     342              : }
     343              : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
     344              : 
     345              : /*
     346              :  * Key expansion, 256-bit case
     347              :  */
     348              : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
     349              : static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
     350              :                              __m128i *rk0, __m128i *rk1)
     351              : {
     352              :     /*
     353              :      * Finish generating the next two round keys.
     354              :      *
     355              :      * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
     356              :      * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
     357              :      * (obtained with AESKEYGENASSIST).
     358              :      *
     359              :      * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
     360              :      */
     361              :     xword = _mm_shuffle_epi32(xword, 0xff);
     362              :     xword = _mm_xor_si128(xword, state0);
     363              :     state0 = _mm_slli_si128(state0, 4);
     364              :     xword = _mm_xor_si128(xword, state0);
     365              :     state0 = _mm_slli_si128(state0, 4);
     366              :     xword = _mm_xor_si128(xword, state0);
     367              :     state0 = _mm_slli_si128(state0, 4);
     368              :     state0 = _mm_xor_si128(state0, xword);
     369              :     *rk0 = state0;
     370              : 
     371              :     /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
     372              :      * and proceed to generate next round key from there */
     373              :     xword = _mm_aeskeygenassist_si128(state0, 0x00);
     374              :     xword = _mm_shuffle_epi32(xword, 0xaa);
     375              :     xword = _mm_xor_si128(xword, state1);
     376              :     state1 = _mm_slli_si128(state1, 4);
     377              :     xword = _mm_xor_si128(xword, state1);
     378              :     state1 = _mm_slli_si128(state1, 4);
     379              :     xword = _mm_xor_si128(xword, state1);
     380              :     state1 = _mm_slli_si128(state1, 4);
     381              :     state1 = _mm_xor_si128(state1, xword);
     382              :     *rk1 = state1;
     383              : }
     384              : 
     385              : static void aesni_setkey_enc_256(unsigned char *rk_bytes,
     386              :                                  const unsigned char *key)
     387              : {
     388              :     __m128i *rk = (__m128i *) rk_bytes;
     389              : 
     390              :     memcpy(&rk[0], key, 16);
     391              :     memcpy(&rk[1], key + 16, 16);
     392              : 
     393              :     /*
     394              :      * Main "loop" - Generating one more key than necessary,
     395              :      * see definition of mbedtls_aes_context.buf
     396              :      */
     397              :     aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
     398              :     aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
     399              :     aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
     400              :     aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
     401              :     aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
     402              :     aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
     403              :     aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
     404              : }
     405              : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
     406              : 
     407              : #if defined(MBEDTLS_POP_TARGET_PRAGMA)
     408              : #if defined(__clang__)
     409              : #pragma clang attribute pop
     410              : #elif defined(__GNUC__)
     411              : #pragma GCC pop_options
     412              : #endif
     413              : #undef MBEDTLS_POP_TARGET_PRAGMA
     414              : #endif
     415              : 
     416              : #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
     417              : 
     418              : #if defined(__has_feature)
     419              : #if __has_feature(memory_sanitizer)
     420              : #warning \
     421              :     "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
     422              : #endif
     423              : #endif
     424              : 
     425              : /*
     426              :  * Binutils needs to be at least 2.19 to support AES-NI instructions.
     427              :  * Unfortunately, a lot of users have a lower version now (2014-04).
     428              :  * Emit bytecode directly in order to support "old" version of gas.
     429              :  *
     430              :  * Opcodes from the Intel architecture reference manual, vol. 3.
     431              :  * We always use registers, so we don't need prefixes for memory operands.
     432              :  * Operand macros are in gas order (src, dst) as opposed to Intel order
     433              :  * (dst, src) in order to blend better into the surrounding assembly code.
     434              :  */
     435              : #define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
     436              : #define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
     437              : #define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
     438              : #define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
     439              : #define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
     440              : #define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
     441              : #define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
     442              : 
     443              : #define xmm0_xmm0   "0xC0"
     444              : #define xmm0_xmm1   "0xC8"
     445              : #define xmm0_xmm2   "0xD0"
     446              : #define xmm0_xmm3   "0xD8"
     447              : #define xmm0_xmm4   "0xE0"
     448              : #define xmm1_xmm0   "0xC1"
     449              : #define xmm1_xmm2   "0xD1"
     450              : 
     451              : /*
     452              :  * AES-NI AES-ECB block en(de)cryption
     453              :  */
     454         3620 : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
     455              :                             int mode,
     456              :                             const unsigned char input[16],
     457              :                             unsigned char output[16])
     458              : {
     459         3620 :     asm ("movdqu    (%3), %%xmm0    \n\t" // load input
     460              :          "movdqu    (%1), %%xmm1    \n\t" // load round key 0
     461              :          "pxor      %%xmm1, %%xmm0  \n\t" // round 0
     462              :          "add       $16, %1         \n\t" // point to next round key
     463              :          "subl      $1, %0          \n\t" // normal rounds = nr - 1
     464              :          "test      %2, %2          \n\t" // mode?
     465              :          "jz        2f              \n\t" // 0 = decrypt
     466              : 
     467              :          "1:                        \n\t" // encryption loop
     468              :          "movdqu    (%1), %%xmm1    \n\t" // load round key
     469              :          AESENC(xmm1_xmm0)                // do round
     470              :          "add       $16, %1         \n\t" // point to next round key
     471              :          "subl      $1, %0          \n\t" // loop
     472              :          "jnz       1b              \n\t"
     473              :          "movdqu    (%1), %%xmm1    \n\t" // load round key
     474              :          AESENCLAST(xmm1_xmm0)            // last round
     475              : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
     476              :          "jmp       3f              \n\t"
     477              : 
     478              :          "2:                        \n\t" // decryption loop
     479              :          "movdqu    (%1), %%xmm1    \n\t"
     480              :          AESDEC(xmm1_xmm0)                // do round
     481              :          "add       $16, %1         \n\t"
     482              :          "subl      $1, %0          \n\t"
     483              :          "jnz       2b              \n\t"
     484              :          "movdqu    (%1), %%xmm1    \n\t" // load round key
     485              :          AESDECLAST(xmm1_xmm0)            // last round
     486              : #endif
     487              : 
     488              :          "3:                        \n\t"
     489              :          "movdqu    %%xmm0, (%4)    \n\t" // export output
     490              :          :
     491         3620 :          : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
     492              :          : "memory", "cc", "xmm0", "xmm1");
     493              : 
     494              : 
     495         3620 :     return 0;
     496              : }
     497              : 
     498              : /*
     499              :  * GCM multiplication: c = a times b in GF(2^128)
     500              :  * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
     501              :  */
     502         3624 : void mbedtls_aesni_gcm_mult(unsigned char c[16],
     503              :                             const unsigned char a[16],
     504              :                             const unsigned char b[16])
     505              : {
     506              :     unsigned char aa[16], bb[16], cc[16];
     507              :     size_t i;
     508              : 
     509              :     /* The inputs are in big-endian order, so byte-reverse them */
     510        61608 :     for (i = 0; i < 16; i++) {
     511        57984 :         aa[i] = a[15 - i];
     512        57984 :         bb[i] = b[15 - i];
     513              :     }
     514              : 
     515         3624 :     asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0
     516              :          "movdqu (%1), %%xmm1               \n\t" // b1:b0
     517              : 
     518              :          /*
     519              :           * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
     520              :           * using [CLMUL-WP] algorithm 1 (p. 12).
     521              :           */
     522              :          "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0
     523              :          "movdqa %%xmm1, %%xmm3             \n\t" // same
     524              :          "movdqa %%xmm1, %%xmm4             \n\t" // same
     525              :          PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0
     526              :          PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0
     527              :          PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0
     528              :          PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0
     529              :          "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0
     530              :          "movdqa %%xmm4, %%xmm3             \n\t" // same
     531              :          "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1
     532              :          "pslldq $8, %%xmm3                 \n\t" // e0+f0:0
     533              :          "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1
     534              :          "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0
     535              : 
     536              :          /*
     537              :           * Now shift the result one bit to the left,
     538              :           * taking advantage of [CLMUL-WP] eq 27 (p. 18)
     539              :           */
     540              :          "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0
     541              :          "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2
     542              :          "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1
     543              :          "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1
     544              :          "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63
     545              :          "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63
     546              :          "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63
     547              :          "pslldq $8, %%xmm3                 \n\t" // r0>>63:0
     548              :          "pslldq $8, %%xmm4                 \n\t" // r2>>63:0
     549              :          "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63
     550              :          "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1
     551              :          "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1
     552              :          "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
     553              : 
     554              :          /*
     555              :           * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
     556              :           * using [CLMUL-WP] algorithm 5 (p. 18).
     557              :           * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
     558              :           */
     559              :          /* Step 2 (1) */
     560              :          "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0
     561              :          "movdqa %%xmm1, %%xmm4             \n\t" // same
     562              :          "movdqa %%xmm1, %%xmm5             \n\t" // same
     563              :          "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a
     564              :          "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b
     565              :          "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c
     566              : 
     567              :          /* Step 2 (2) */
     568              :          "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b
     569              :          "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c
     570              :          "pslldq $8, %%xmm3                 \n\t" // a+b+c:0
     571              :          "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0
     572              : 
     573              :          /* Steps 3 and 4 */
     574              :          "movdqa %%xmm1,%%xmm0              \n\t" // d:x0
     575              :          "movdqa %%xmm1,%%xmm4              \n\t" // same
     576              :          "movdqa %%xmm1,%%xmm5              \n\t" // same
     577              :          "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'
     578              :          "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'
     579              :          "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'
     580              :          "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'
     581              :          "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'
     582              :          // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
     583              :          // bits carried from d. Now get those\t bits back in.
     584              :          "movdqa %%xmm1,%%xmm3              \n\t" // d:x0
     585              :          "movdqa %%xmm1,%%xmm4              \n\t" // same
     586              :          "movdqa %%xmm1,%%xmm5              \n\t" // same
     587              :          "psllq $63, %%xmm3                 \n\t" // d<<63:stuff
     588              :          "psllq $62, %%xmm4                 \n\t" // d<<62:stuff
     589              :          "psllq $57, %%xmm5                 \n\t" // d<<57:stuff
     590              :          "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff
     591              :          "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff
     592              :          "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d
     593              :          "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0
     594              :          "pxor %%xmm1, %%xmm0               \n\t" // h1:h0
     595              :          "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0
     596              : 
     597              :          "movdqu %%xmm0, (%2)               \n\t" // done
     598              :          :
     599              :          : "r" (aa), "r" (bb), "r" (cc)
     600              :          : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
     601              : 
     602              :     /* Now byte-reverse the outputs */
     603        61608 :     for (i = 0; i < 16; i++) {
     604        57984 :         c[i] = cc[15 - i];
     605              :     }
     606              : 
     607         3624 :     return;
     608              : }
     609              : 
     610              : /*
     611              :  * Compute decryption round keys from encryption round keys
     612              :  */
     613              : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
     614            0 : void mbedtls_aesni_inverse_key(unsigned char *invkey,
     615              :                                const unsigned char *fwdkey, int nr)
     616              : {
     617            0 :     unsigned char *ik = invkey;
     618            0 :     const unsigned char *fk = fwdkey + 16 * nr;
     619              : 
     620            0 :     memcpy(ik, fk, 16);
     621              : 
     622            0 :     for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
     623            0 :         asm ("movdqu (%0), %%xmm0       \n\t"
     624              :              AESIMC(xmm0_xmm0)
     625              :              "movdqu %%xmm0, (%1)       \n\t"
     626              :              :
     627              :              : "r" (fk), "r" (ik)
     628              :              : "memory", "xmm0");
     629              :     }
     630              : 
     631            0 :     memcpy(ik, fk, 16);
     632            0 : }
     633              : #endif
     634              : 
     635              : /*
     636              :  * Key expansion, 128-bit case
     637              :  */
     638            2 : static void aesni_setkey_enc_128(unsigned char *rk,
     639              :                                  const unsigned char *key)
     640              : {
     641            2 :     asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key
     642              :          "movdqu %%xmm0, (%0)               \n\t" // as round key 0
     643              :          "jmp 2f                            \n\t" // skip auxiliary routine
     644              : 
     645              :          /*
     646              :           * Finish generating the next round key.
     647              :           *
     648              :           * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
     649              :           * with X = rot( sub( r3 ) ) ^ RCON.
     650              :           *
     651              :           * On exit, xmm0 is r7:r6:r5:r4
     652              :           * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
     653              :           * and those are written to the round key buffer.
     654              :           */
     655              :          "1:                                \n\t"
     656              :          "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X
     657              :          "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4
     658              :          "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0
     659              :          "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4
     660              :          "pslldq $4, %%xmm0                 \n\t" // etc
     661              :          "pxor %%xmm0, %%xmm1               \n\t"
     662              :          "pslldq $4, %%xmm0                 \n\t"
     663              :          "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!
     664              :          "add $16, %0                       \n\t" // point to next round key
     665              :          "movdqu %%xmm0, (%0)               \n\t" // write it
     666              :          "ret                               \n\t"
     667              : 
     668              :          /* Main "loop" */
     669              :          "2:                                \n\t"
     670              :          AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t"
     671              :          AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t"
     672              :          AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t"
     673              :          AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t"
     674              :          AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t"
     675              :          AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t"
     676              :          AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t"
     677              :          AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t"
     678              :          AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t"
     679              :          AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t"
     680              :          :
     681              :          : "r" (rk), "r" (key)
     682              :          : "memory", "cc", "0");
     683            2 : }
     684              : 
     685              : /*
     686              :  * Key expansion, 192-bit case
     687              :  */
     688              : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
     689            0 : static void aesni_setkey_enc_192(unsigned char *rk,
     690              :                                  const unsigned char *key)
     691              : {
     692            0 :     asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key
     693              :          "movdqu %%xmm0, (%0)   \n\t"
     694              :          "add $16, %0           \n\t"
     695              :          "movq 16(%1), %%xmm1   \n\t"
     696              :          "movq %%xmm1, (%0)     \n\t"
     697              :          "add $8, %0            \n\t"
     698              :          "jmp 2f                \n\t" // skip auxiliary routine
     699              : 
     700              :          /*
     701              :           * Finish generating the next 6 quarter-keys.
     702              :           *
     703              :           * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
     704              :           * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
     705              :           *
     706              :           * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
     707              :           * and those are written to the round key buffer.
     708              :           */
     709              :          "1:                            \n\t"
     710              :          "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X
     711              :          "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4
     712              :          "pslldq $4, %%xmm0             \n\t" // etc
     713              :          "pxor %%xmm0, %%xmm2           \n\t"
     714              :          "pslldq $4, %%xmm0             \n\t"
     715              :          "pxor %%xmm0, %%xmm2           \n\t"
     716              :          "pslldq $4, %%xmm0             \n\t"
     717              :          "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6
     718              :          "movdqu %%xmm0, (%0)           \n\t"
     719              :          "add $16, %0                   \n\t"
     720              :          "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9
     721              :          "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10
     722              :          "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0
     723              :          "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10
     724              :          "movq %%xmm1, (%0)             \n\t"
     725              :          "add $8, %0                    \n\t"
     726              :          "ret                           \n\t"
     727              : 
     728              :          "2:                            \n\t"
     729              :          AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t"
     730              :          AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t"
     731              :          AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t"
     732              :          AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t"
     733              :          AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t"
     734              :          AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t"
     735              :          AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t"
     736              :          AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t"
     737              : 
     738              :          :
     739              :          : "r" (rk), "r" (key)
     740              :          : "memory", "cc", "0");
     741            0 : }
     742              : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
     743              : 
     744              : /*
     745              :  * Key expansion, 256-bit case
     746              :  */
     747              : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
     748          793 : static void aesni_setkey_enc_256(unsigned char *rk,
     749              :                                  const unsigned char *key)
     750              : {
     751          793 :     asm ("movdqu (%1), %%xmm0           \n\t"
     752              :          "movdqu %%xmm0, (%0)           \n\t"
     753              :          "add $16, %0                   \n\t"
     754              :          "movdqu 16(%1), %%xmm1         \n\t"
     755              :          "movdqu %%xmm1, (%0)           \n\t"
     756              :          "jmp 2f                        \n\t" // skip auxiliary routine
     757              : 
     758              :          /*
     759              :           * Finish generating the next two round keys.
     760              :           *
     761              :           * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
     762              :           * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
     763              :           *
     764              :           * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
     765              :           * and those have been written to the output buffer.
     766              :           */
     767              :          "1:                                \n\t"
     768              :          "pshufd $0xff, %%xmm2, %%xmm2      \n\t"
     769              :          "pxor %%xmm0, %%xmm2               \n\t"
     770              :          "pslldq $4, %%xmm0                 \n\t"
     771              :          "pxor %%xmm0, %%xmm2               \n\t"
     772              :          "pslldq $4, %%xmm0                 \n\t"
     773              :          "pxor %%xmm0, %%xmm2               \n\t"
     774              :          "pslldq $4, %%xmm0                 \n\t"
     775              :          "pxor %%xmm2, %%xmm0               \n\t"
     776              :          "add $16, %0                       \n\t"
     777              :          "movdqu %%xmm0, (%0)               \n\t"
     778              : 
     779              :          /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
     780              :           * and proceed to generate next round key from there */
     781              :          AESKEYGENA(xmm0_xmm2, "0x00")
     782              :          "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"
     783              :          "pxor %%xmm1, %%xmm2               \n\t"
     784              :          "pslldq $4, %%xmm1                 \n\t"
     785              :          "pxor %%xmm1, %%xmm2               \n\t"
     786              :          "pslldq $4, %%xmm1                 \n\t"
     787              :          "pxor %%xmm1, %%xmm2               \n\t"
     788              :          "pslldq $4, %%xmm1                 \n\t"
     789              :          "pxor %%xmm2, %%xmm1               \n\t"
     790              :          "add $16, %0                       \n\t"
     791              :          "movdqu %%xmm1, (%0)               \n\t"
     792              :          "ret                               \n\t"
     793              : 
     794              :          /*
     795              :           * Main "loop" - Generating one more key than necessary,
     796              :           * see definition of mbedtls_aes_context.buf
     797              :           */
     798              :          "2:                                \n\t"
     799              :          AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t"
     800              :          AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t"
     801              :          AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t"
     802              :          AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t"
     803              :          AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t"
     804              :          AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t"
     805              :          AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t"
     806              :          :
     807              :          : "r" (rk), "r" (key)
     808              :          : "memory", "cc", "0");
     809          793 : }
     810              : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
     811              : 
     812              : #endif  /* MBEDTLS_AESNI_HAVE_CODE */
     813              : 
     814              : /*
     815              :  * Key expansion, wrapper
     816              :  */
     817          795 : int mbedtls_aesni_setkey_enc(unsigned char *rk,
     818              :                              const unsigned char *key,
     819              :                              size_t bits)
     820              : {
     821          795 :     switch (bits) {
     822            2 :         case 128: aesni_setkey_enc_128(rk, key); break;
     823              : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
     824            0 :         case 192: aesni_setkey_enc_192(rk, key); break;
     825          793 :         case 256: aesni_setkey_enc_256(rk, key); break;
     826              : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
     827            0 :         default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
     828              :     }
     829              : 
     830          795 :     return 0;
     831              : }
     832              : 
     833              : #endif /* MBEDTLS_AESNI_HAVE_CODE */
     834              : 
     835              : #endif /* MBEDTLS_AESNI_C */
        

Generated by: LCOV version 2.0-1