Line data Source code
1 : /*
2 : * AES-NI support functions
3 : *
4 : * Copyright The Mbed TLS Contributors
5 : * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 : */
7 :
8 : /*
9 : * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10 : * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11 : */
12 :
13 : #include "common.h"
14 :
15 : #if defined(MBEDTLS_AESNI_C)
16 :
17 : #include "aesni.h"
18 :
19 : #include <string.h>
20 :
21 : #if defined(MBEDTLS_AESNI_HAVE_CODE)
22 :
23 : #if MBEDTLS_AESNI_HAVE_CODE == 2
24 : #if defined(__GNUC__)
25 : #include <cpuid.h>
26 : #elif defined(_MSC_VER)
27 : #include <intrin.h>
28 : #else
29 : #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30 : #endif
31 : #include <immintrin.h>
32 : #endif
33 :
34 : #if defined(MBEDTLS_ARCH_IS_X86)
35 : #if defined(MBEDTLS_COMPILER_IS_GCC)
36 : #pragma GCC push_options
37 : #pragma GCC target ("pclmul,sse2,aes")
38 : #define MBEDTLS_POP_TARGET_PRAGMA
39 : #elif defined(__clang__) && (__clang_major__ >= 5)
40 : #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41 : #define MBEDTLS_POP_TARGET_PRAGMA
42 : #endif
43 : #endif
44 :
45 : #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46 : /*
47 : * AES-NI support detection routine
48 : */
49 5482 : int mbedtls_aesni_has_support(unsigned int what)
50 : {
51 : /* To avoid a race condition, tell the compiler that the assignment
52 : * `done = 1` and the assignment to `c` may not be reordered.
53 : * https://github.com/Mbed-TLS/mbedtls/issues/9840
54 : *
55 : * Note that we may also be worried about memory access reordering,
56 : * but fortunately the x86 memory model is not too wild: stores
57 : * from the same thread are observed consistently by other threads.
58 : * (See example 8-1 in Sewell et al., "x86-TSO: A Rigorous and Usable
59 : * Programmer’s Model for x86 Multiprocessors", CACM, 2010,
60 : * https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf)
61 : */
62 : static volatile int done = 0;
63 : static volatile unsigned int c = 0;
64 :
65 5482 : if (!done) {
66 : #if MBEDTLS_AESNI_HAVE_CODE == 2
67 : static int info[4] = { 0, 0, 0, 0 };
68 : #if defined(_MSC_VER)
69 : __cpuid(info, 1);
70 : #else
71 : __cpuid(1, info[0], info[1], info[2], info[3]);
72 : #endif
73 : c = info[2];
74 : #else /* AESNI using asm */
75 2 : asm ("movl $1, %%eax \n\t"
76 : "cpuid \n\t"
77 : : "=c" (c)
78 : :
79 : : "eax", "ebx", "edx");
80 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
81 2 : done = 1;
82 : }
83 :
84 5482 : return (c & what) != 0;
85 : }
86 : #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
87 :
88 : #if MBEDTLS_AESNI_HAVE_CODE == 2
89 :
90 : /*
91 : * AES-NI AES-ECB block en(de)cryption
92 : */
93 : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
94 : int mode,
95 : const unsigned char input[16],
96 : unsigned char output[16])
97 : {
98 : const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
99 : unsigned nr = ctx->nr; // Number of remaining rounds
100 :
101 : // Load round key 0
102 : __m128i state;
103 : memcpy(&state, input, 16);
104 : state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
105 : ++rk;
106 : --nr;
107 :
108 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
109 : if (mode == MBEDTLS_AES_DECRYPT) {
110 : while (nr != 0) {
111 : state = _mm_aesdec_si128(state, *rk);
112 : ++rk;
113 : --nr;
114 : }
115 : state = _mm_aesdeclast_si128(state, *rk);
116 : } else
117 : #else
118 : (void) mode;
119 : #endif
120 : {
121 : while (nr != 0) {
122 : state = _mm_aesenc_si128(state, *rk);
123 : ++rk;
124 : --nr;
125 : }
126 : state = _mm_aesenclast_si128(state, *rk);
127 : }
128 :
129 : memcpy(output, &state, 16);
130 : return 0;
131 : }
132 :
133 : /*
134 : * GCM multiplication: c = a times b in GF(2^128)
135 : * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
136 : */
137 :
138 : static void gcm_clmul(const __m128i aa, const __m128i bb,
139 : __m128i *cc, __m128i *dd)
140 : {
141 : /*
142 : * Caryless multiplication dd:cc = aa * bb
143 : * using [CLMUL-WP] algorithm 1 (p. 12).
144 : */
145 : *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
146 : *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
147 : __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
148 : __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
149 : ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
150 : ee = ff; // e1+f1:e0+f0
151 : ff = _mm_srli_si128(ff, 8); // 0:e1+f1
152 : ee = _mm_slli_si128(ee, 8); // e0+f0:0
153 : *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
154 : *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
155 : }
156 :
157 : static void gcm_shift(__m128i *cc, __m128i *dd)
158 : {
159 : /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
160 : * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
161 : // // *cc = r1:r0
162 : // // *dd = r3:r2
163 : __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
164 : __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
165 : __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
166 : __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
167 : __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
168 : cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
169 : dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
170 :
171 : *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
172 : *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
173 : }
174 :
175 : static __m128i gcm_reduce(__m128i xx)
176 : {
177 : // // xx = x1:x0
178 : /* [CLMUL-WP] Algorithm 5 Step 2 */
179 : __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
180 : __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
181 : __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
182 : __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
183 : return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
184 : }
185 :
186 : static __m128i gcm_mix(__m128i dx)
187 : {
188 : /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
189 : __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
190 : __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
191 : __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
192 :
193 : // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
194 : // bits carried from d. Now get those bits back in.
195 : __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
196 : __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
197 : __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
198 : __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
199 :
200 : return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
201 : }
202 :
203 : void mbedtls_aesni_gcm_mult(unsigned char c[16],
204 : const unsigned char a[16],
205 : const unsigned char b[16])
206 : {
207 : __m128i aa = { 0 }, bb = { 0 }, cc, dd;
208 :
209 : /* The inputs are in big-endian order, so byte-reverse them */
210 : for (size_t i = 0; i < 16; i++) {
211 : ((uint8_t *) &aa)[i] = a[15 - i];
212 : ((uint8_t *) &bb)[i] = b[15 - i];
213 : }
214 :
215 : gcm_clmul(aa, bb, &cc, &dd);
216 : gcm_shift(&cc, &dd);
217 : /*
218 : * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
219 : * using [CLMUL-WP] algorithm 5 (p. 18).
220 : * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
221 : */
222 : __m128i dx = gcm_reduce(cc);
223 : __m128i xh = gcm_mix(dx);
224 : cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
225 :
226 : /* Now byte-reverse the outputs */
227 : for (size_t i = 0; i < 16; i++) {
228 : c[i] = ((uint8_t *) &cc)[15 - i];
229 : }
230 :
231 : return;
232 : }
233 :
234 : /*
235 : * Compute decryption round keys from encryption round keys
236 : */
237 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
238 : void mbedtls_aesni_inverse_key(unsigned char *invkey,
239 : const unsigned char *fwdkey, int nr)
240 : {
241 : __m128i *ik = (__m128i *) invkey;
242 : const __m128i *fk = (const __m128i *) fwdkey + nr;
243 :
244 : *ik = *fk;
245 : for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
246 : *ik = _mm_aesimc_si128(*fk);
247 : }
248 : *ik = *fk;
249 : }
250 : #endif
251 :
252 : /*
253 : * Key expansion, 128-bit case
254 : */
255 : static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
256 : {
257 : /*
258 : * Finish generating the next round key.
259 : *
260 : * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
261 : * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
262 : *
263 : * On exit, xword is r7:r6:r5:r4
264 : * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
265 : * and this is returned, to be written to the round key buffer.
266 : */
267 : xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
268 : xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
269 : state = _mm_slli_si128(state, 4); // r2:r1:r0:0
270 : xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
271 : state = _mm_slli_si128(state, 4); // r1:r0:0:0
272 : xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
273 : state = _mm_slli_si128(state, 4); // r0:0:0:0
274 : state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
275 : return state;
276 : }
277 :
278 : static void aesni_setkey_enc_128(unsigned char *rk_bytes,
279 : const unsigned char *key)
280 : {
281 : __m128i *rk = (__m128i *) rk_bytes;
282 :
283 : memcpy(&rk[0], key, 16);
284 : rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
285 : rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
286 : rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
287 : rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
288 : rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
289 : rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
290 : rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
291 : rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
292 : rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
293 : rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
294 : }
295 :
296 : /*
297 : * Key expansion, 192-bit case
298 : */
299 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
300 : static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
301 : unsigned char *rk)
302 : {
303 : /*
304 : * Finish generating the next 6 quarter-keys.
305 : *
306 : * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
307 : * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
308 : * (obtained with AESKEYGENASSIST).
309 : *
310 : * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
311 : * and those are written to the round key buffer.
312 : */
313 : xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
314 : xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
315 : *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
316 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
317 : *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
318 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
319 : *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
320 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
321 : *state0 = xword; // = r9:r8:r7:r6
322 :
323 : xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
324 : xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
325 : *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
326 : xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
327 : *state1 = xword; // = stuff:stuff:r11:r10
328 :
329 : /* Store state0 and the low half of state1 into rk, which is conceptually
330 : * an array of 24-byte elements. Since 24 is not a multiple of 16,
331 : * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
332 : memcpy(rk, state0, 16);
333 : memcpy(rk + 16, state1, 8);
334 : }
335 :
336 : static void aesni_setkey_enc_192(unsigned char *rk,
337 : const unsigned char *key)
338 : {
339 : /* First round: use original key */
340 : memcpy(rk, key, 24);
341 : /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
342 : __m128i state0 = ((__m128i *) rk)[0];
343 : __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
344 :
345 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
346 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
347 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
348 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
349 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
350 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
351 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
352 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
353 : }
354 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
355 :
356 : /*
357 : * Key expansion, 256-bit case
358 : */
359 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
360 : static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
361 : __m128i *rk0, __m128i *rk1)
362 : {
363 : /*
364 : * Finish generating the next two round keys.
365 : *
366 : * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
367 : * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
368 : * (obtained with AESKEYGENASSIST).
369 : *
370 : * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
371 : */
372 : xword = _mm_shuffle_epi32(xword, 0xff);
373 : xword = _mm_xor_si128(xword, state0);
374 : state0 = _mm_slli_si128(state0, 4);
375 : xword = _mm_xor_si128(xword, state0);
376 : state0 = _mm_slli_si128(state0, 4);
377 : xword = _mm_xor_si128(xword, state0);
378 : state0 = _mm_slli_si128(state0, 4);
379 : state0 = _mm_xor_si128(state0, xword);
380 : *rk0 = state0;
381 :
382 : /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
383 : * and proceed to generate next round key from there */
384 : xword = _mm_aeskeygenassist_si128(state0, 0x00);
385 : xword = _mm_shuffle_epi32(xword, 0xaa);
386 : xword = _mm_xor_si128(xword, state1);
387 : state1 = _mm_slli_si128(state1, 4);
388 : xword = _mm_xor_si128(xword, state1);
389 : state1 = _mm_slli_si128(state1, 4);
390 : xword = _mm_xor_si128(xword, state1);
391 : state1 = _mm_slli_si128(state1, 4);
392 : state1 = _mm_xor_si128(state1, xword);
393 : *rk1 = state1;
394 : }
395 :
396 : static void aesni_setkey_enc_256(unsigned char *rk_bytes,
397 : const unsigned char *key)
398 : {
399 : __m128i *rk = (__m128i *) rk_bytes;
400 :
401 : memcpy(&rk[0], key, 16);
402 : memcpy(&rk[1], key + 16, 16);
403 :
404 : /*
405 : * Main "loop" - Generating one more key than necessary,
406 : * see definition of mbedtls_aes_context.buf
407 : */
408 : aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
409 : aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
410 : aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
411 : aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
412 : aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
413 : aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
414 : aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
415 : }
416 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
417 :
418 : #if defined(MBEDTLS_POP_TARGET_PRAGMA)
419 : #if defined(__clang__)
420 : #pragma clang attribute pop
421 : #elif defined(__GNUC__)
422 : #pragma GCC pop_options
423 : #endif
424 : #undef MBEDTLS_POP_TARGET_PRAGMA
425 : #endif
426 :
427 : #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
428 :
429 : #if defined(__has_feature)
430 : #if __has_feature(memory_sanitizer)
431 : #warning \
432 : "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
433 : #endif
434 : #endif
435 :
436 : /*
437 : * Binutils needs to be at least 2.19 to support AES-NI instructions.
438 : * Unfortunately, a lot of users have a lower version now (2014-04).
439 : * Emit bytecode directly in order to support "old" version of gas.
440 : *
441 : * Opcodes from the Intel architecture reference manual, vol. 3.
442 : * We always use registers, so we don't need prefixes for memory operands.
443 : * Operand macros are in gas order (src, dst) as opposed to Intel order
444 : * (dst, src) in order to blend better into the surrounding assembly code.
445 : */
446 : #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
447 : #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
448 : #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
449 : #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
450 : #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
451 : #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
452 : #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
453 :
454 : #define xmm0_xmm0 "0xC0"
455 : #define xmm0_xmm1 "0xC8"
456 : #define xmm0_xmm2 "0xD0"
457 : #define xmm0_xmm3 "0xD8"
458 : #define xmm0_xmm4 "0xE0"
459 : #define xmm1_xmm0 "0xC1"
460 : #define xmm1_xmm2 "0xD1"
461 :
462 : /*
463 : * AES-NI AES-ECB block en(de)cryption
464 : */
465 3844 : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
466 : int mode,
467 : const unsigned char input[16],
468 : unsigned char output[16])
469 : {
470 3844 : asm ("movdqu (%3), %%xmm0 \n\t" // load input
471 : "movdqu (%1), %%xmm1 \n\t" // load round key 0
472 : "pxor %%xmm1, %%xmm0 \n\t" // round 0
473 : "add $16, %1 \n\t" // point to next round key
474 : "subl $1, %0 \n\t" // normal rounds = nr - 1
475 : "test %2, %2 \n\t" // mode?
476 : "jz 2f \n\t" // 0 = decrypt
477 :
478 : "1: \n\t" // encryption loop
479 : "movdqu (%1), %%xmm1 \n\t" // load round key
480 : AESENC(xmm1_xmm0) // do round
481 : "add $16, %1 \n\t" // point to next round key
482 : "subl $1, %0 \n\t" // loop
483 : "jnz 1b \n\t"
484 : "movdqu (%1), %%xmm1 \n\t" // load round key
485 : AESENCLAST(xmm1_xmm0) // last round
486 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
487 : "jmp 3f \n\t"
488 :
489 : "2: \n\t" // decryption loop
490 : "movdqu (%1), %%xmm1 \n\t"
491 : AESDEC(xmm1_xmm0) // do round
492 : "add $16, %1 \n\t"
493 : "subl $1, %0 \n\t"
494 : "jnz 2b \n\t"
495 : "movdqu (%1), %%xmm1 \n\t" // load round key
496 : AESDECLAST(xmm1_xmm0) // last round
497 : #endif
498 :
499 : "3: \n\t"
500 : "movdqu %%xmm0, (%4) \n\t" // export output
501 : :
502 3844 : : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
503 : : "memory", "cc", "xmm0", "xmm1", "0", "1");
504 :
505 :
506 3844 : return 0;
507 : }
508 :
509 : /*
510 : * GCM multiplication: c = a times b in GF(2^128)
511 : * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
512 : */
513 3848 : void mbedtls_aesni_gcm_mult(unsigned char c[16],
514 : const unsigned char a[16],
515 : const unsigned char b[16])
516 : {
517 : unsigned char aa[16], bb[16], cc[16];
518 : size_t i;
519 :
520 : /* The inputs are in big-endian order, so byte-reverse them */
521 65416 : for (i = 0; i < 16; i++) {
522 61568 : aa[i] = a[15 - i];
523 61568 : bb[i] = b[15 - i];
524 : }
525 :
526 3848 : asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
527 : "movdqu (%1), %%xmm1 \n\t" // b1:b0
528 :
529 : /*
530 : * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
531 : * using [CLMUL-WP] algorithm 1 (p. 12).
532 : */
533 : "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
534 : "movdqa %%xmm1, %%xmm3 \n\t" // same
535 : "movdqa %%xmm1, %%xmm4 \n\t" // same
536 : PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
537 : PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
538 : PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
539 : PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
540 : "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
541 : "movdqa %%xmm4, %%xmm3 \n\t" // same
542 : "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
543 : "pslldq $8, %%xmm3 \n\t" // e0+f0:0
544 : "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
545 : "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
546 :
547 : /*
548 : * Now shift the result one bit to the left,
549 : * taking advantage of [CLMUL-WP] eq 27 (p. 18)
550 : */
551 : "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
552 : "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
553 : "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
554 : "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
555 : "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
556 : "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
557 : "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
558 : "pslldq $8, %%xmm3 \n\t" // r0>>63:0
559 : "pslldq $8, %%xmm4 \n\t" // r2>>63:0
560 : "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
561 : "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
562 : "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
563 : "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
564 :
565 : /*
566 : * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
567 : * using [CLMUL-WP] algorithm 5 (p. 18).
568 : * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
569 : */
570 : /* Step 2 (1) */
571 : "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
572 : "movdqa %%xmm1, %%xmm4 \n\t" // same
573 : "movdqa %%xmm1, %%xmm5 \n\t" // same
574 : "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
575 : "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
576 : "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
577 :
578 : /* Step 2 (2) */
579 : "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
580 : "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
581 : "pslldq $8, %%xmm3 \n\t" // a+b+c:0
582 : "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
583 :
584 : /* Steps 3 and 4 */
585 : "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
586 : "movdqa %%xmm1,%%xmm4 \n\t" // same
587 : "movdqa %%xmm1,%%xmm5 \n\t" // same
588 : "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
589 : "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
590 : "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
591 : "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
592 : "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
593 : // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
594 : // bits carried from d. Now get those\t bits back in.
595 : "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
596 : "movdqa %%xmm1,%%xmm4 \n\t" // same
597 : "movdqa %%xmm1,%%xmm5 \n\t" // same
598 : "psllq $63, %%xmm3 \n\t" // d<<63:stuff
599 : "psllq $62, %%xmm4 \n\t" // d<<62:stuff
600 : "psllq $57, %%xmm5 \n\t" // d<<57:stuff
601 : "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
602 : "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
603 : "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
604 : "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
605 : "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
606 : "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
607 :
608 : "movdqu %%xmm0, (%2) \n\t" // done
609 : :
610 : : "r" (aa), "r" (bb), "r" (cc)
611 : : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
612 :
613 : /* Now byte-reverse the outputs */
614 65416 : for (i = 0; i < 16; i++) {
615 61568 : c[i] = cc[15 - i];
616 : }
617 :
618 3848 : return;
619 : }
620 :
621 : /*
622 : * Compute decryption round keys from encryption round keys
623 : */
624 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
625 0 : void mbedtls_aesni_inverse_key(unsigned char *invkey,
626 : const unsigned char *fwdkey, int nr)
627 : {
628 0 : unsigned char *ik = invkey;
629 0 : const unsigned char *fk = fwdkey + 16 * nr;
630 :
631 0 : memcpy(ik, fk, 16);
632 :
633 0 : for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
634 0 : asm ("movdqu (%0), %%xmm0 \n\t"
635 : AESIMC(xmm0_xmm0)
636 : "movdqu %%xmm0, (%1) \n\t"
637 : :
638 : : "r" (fk), "r" (ik)
639 : : "memory", "xmm0");
640 : }
641 :
642 0 : memcpy(ik, fk, 16);
643 0 : }
644 : #endif
645 :
646 : /*
647 : * Key expansion, 128-bit case
648 : */
649 2 : static void aesni_setkey_enc_128(unsigned char *rk,
650 : const unsigned char *key)
651 : {
652 2 : asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
653 : "movdqu %%xmm0, (%0) \n\t" // as round key 0
654 : "jmp 2f \n\t" // skip auxiliary routine
655 :
656 : /*
657 : * Finish generating the next round key.
658 : *
659 : * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
660 : * with X = rot( sub( r3 ) ) ^ RCON.
661 : *
662 : * On exit, xmm0 is r7:r6:r5:r4
663 : * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
664 : * and those are written to the round key buffer.
665 : */
666 : "1: \n\t"
667 : "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
668 : "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
669 : "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
670 : "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
671 : "pslldq $4, %%xmm0 \n\t" // etc
672 : "pxor %%xmm0, %%xmm1 \n\t"
673 : "pslldq $4, %%xmm0 \n\t"
674 : "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
675 : "add $16, %0 \n\t" // point to next round key
676 : "movdqu %%xmm0, (%0) \n\t" // write it
677 : "ret \n\t"
678 :
679 : /* Main "loop" */
680 : "2: \n\t"
681 : AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
682 : AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
683 : AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
684 : AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
685 : AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
686 : AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
687 : AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
688 : AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
689 : AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
690 : AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
691 : :
692 : : "r" (rk), "r" (key)
693 : : "memory", "cc", "xmm0", "xmm1", "0");
694 2 : }
695 :
696 : /*
697 : * Key expansion, 192-bit case
698 : */
699 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
700 0 : static void aesni_setkey_enc_192(unsigned char *rk,
701 : const unsigned char *key)
702 : {
703 0 : asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
704 : "movdqu %%xmm0, (%0) \n\t"
705 : "add $16, %0 \n\t"
706 : "movq 16(%1), %%xmm1 \n\t"
707 : "movq %%xmm1, (%0) \n\t"
708 : "add $8, %0 \n\t"
709 : "jmp 2f \n\t" // skip auxiliary routine
710 :
711 : /*
712 : * Finish generating the next 6 quarter-keys.
713 : *
714 : * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
715 : * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
716 : *
717 : * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
718 : * and those are written to the round key buffer.
719 : */
720 : "1: \n\t"
721 : "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
722 : "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
723 : "pslldq $4, %%xmm0 \n\t" // etc
724 : "pxor %%xmm0, %%xmm2 \n\t"
725 : "pslldq $4, %%xmm0 \n\t"
726 : "pxor %%xmm0, %%xmm2 \n\t"
727 : "pslldq $4, %%xmm0 \n\t"
728 : "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
729 : "movdqu %%xmm0, (%0) \n\t"
730 : "add $16, %0 \n\t"
731 : "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
732 : "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
733 : "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
734 : "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
735 : "movq %%xmm1, (%0) \n\t"
736 : "add $8, %0 \n\t"
737 : "ret \n\t"
738 :
739 : "2: \n\t"
740 : AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
741 : AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
742 : AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
743 : AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
744 : AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
745 : AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
746 : AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
747 : AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
748 :
749 : :
750 : : "r" (rk), "r" (key)
751 : : "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
752 0 : }
753 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
754 :
755 : /*
756 : * Key expansion, 256-bit case
757 : */
758 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
759 817 : static void aesni_setkey_enc_256(unsigned char *rk,
760 : const unsigned char *key)
761 : {
762 817 : asm ("movdqu (%1), %%xmm0 \n\t"
763 : "movdqu %%xmm0, (%0) \n\t"
764 : "add $16, %0 \n\t"
765 : "movdqu 16(%1), %%xmm1 \n\t"
766 : "movdqu %%xmm1, (%0) \n\t"
767 : "jmp 2f \n\t" // skip auxiliary routine
768 :
769 : /*
770 : * Finish generating the next two round keys.
771 : *
772 : * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
773 : * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
774 : *
775 : * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
776 : * and those have been written to the output buffer.
777 : */
778 : "1: \n\t"
779 : "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
780 : "pxor %%xmm0, %%xmm2 \n\t"
781 : "pslldq $4, %%xmm0 \n\t"
782 : "pxor %%xmm0, %%xmm2 \n\t"
783 : "pslldq $4, %%xmm0 \n\t"
784 : "pxor %%xmm0, %%xmm2 \n\t"
785 : "pslldq $4, %%xmm0 \n\t"
786 : "pxor %%xmm2, %%xmm0 \n\t"
787 : "add $16, %0 \n\t"
788 : "movdqu %%xmm0, (%0) \n\t"
789 :
790 : /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
791 : * and proceed to generate next round key from there */
792 : AESKEYGENA(xmm0_xmm2, "0x00")
793 : "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
794 : "pxor %%xmm1, %%xmm2 \n\t"
795 : "pslldq $4, %%xmm1 \n\t"
796 : "pxor %%xmm1, %%xmm2 \n\t"
797 : "pslldq $4, %%xmm1 \n\t"
798 : "pxor %%xmm1, %%xmm2 \n\t"
799 : "pslldq $4, %%xmm1 \n\t"
800 : "pxor %%xmm2, %%xmm1 \n\t"
801 : "add $16, %0 \n\t"
802 : "movdqu %%xmm1, (%0) \n\t"
803 : "ret \n\t"
804 :
805 : /*
806 : * Main "loop" - Generating one more key than necessary,
807 : * see definition of mbedtls_aes_context.buf
808 : */
809 : "2: \n\t"
810 : AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
811 : AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
812 : AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
813 : AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
814 : AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
815 : AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
816 : AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
817 : :
818 : : "r" (rk), "r" (key)
819 : : "memory", "cc", "xmm0", "xmm1", "xmm2", "0");
820 817 : }
821 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
822 :
823 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
824 :
825 : /*
826 : * Key expansion, wrapper
827 : */
828 819 : int mbedtls_aesni_setkey_enc(unsigned char *rk,
829 : const unsigned char *key,
830 : size_t bits)
831 : {
832 819 : switch (bits) {
833 2 : case 128: aesni_setkey_enc_128(rk, key); break;
834 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
835 0 : case 192: aesni_setkey_enc_192(rk, key); break;
836 817 : case 256: aesni_setkey_enc_256(rk, key); break;
837 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
838 0 : default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
839 : }
840 :
841 819 : return 0;
842 : }
843 :
844 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
845 :
846 : #endif /* MBEDTLS_AESNI_C */
|