Line data Source code
1 : /*
2 : * AES-NI support functions
3 : *
4 : * Copyright The Mbed TLS Contributors
5 : * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 : */
7 :
8 : /*
9 : * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10 : * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11 : */
12 :
13 : #include "common.h"
14 :
15 : #if defined(MBEDTLS_AESNI_C)
16 :
17 : #include "aesni.h"
18 :
19 : #include <string.h>
20 :
21 : #if defined(MBEDTLS_AESNI_HAVE_CODE)
22 :
23 : #if MBEDTLS_AESNI_HAVE_CODE == 2
24 : #if defined(__GNUC__)
25 : #include <cpuid.h>
26 : #elif defined(_MSC_VER)
27 : #include <intrin.h>
28 : #else
29 : #error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30 : #endif
31 : #include <immintrin.h>
32 : #endif
33 :
34 : #if defined(MBEDTLS_ARCH_IS_X86)
35 : #if defined(MBEDTLS_COMPILER_IS_GCC)
36 : #pragma GCC push_options
37 : #pragma GCC target ("pclmul,sse2,aes")
38 : #define MBEDTLS_POP_TARGET_PRAGMA
39 : #elif defined(__clang__) && (__clang_major__ >= 5)
40 : #pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41 : #define MBEDTLS_POP_TARGET_PRAGMA
42 : #endif
43 : #endif
44 :
45 : #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46 : /*
47 : * AES-NI support detection routine
48 : */
49 5210 : int mbedtls_aesni_has_support(unsigned int what)
50 : {
51 : static int done = 0;
52 : static unsigned int c = 0;
53 :
54 5210 : if (!done) {
55 : #if MBEDTLS_AESNI_HAVE_CODE == 2
56 : static int info[4] = { 0, 0, 0, 0 };
57 : #if defined(_MSC_VER)
58 : __cpuid(info, 1);
59 : #else
60 : __cpuid(1, info[0], info[1], info[2], info[3]);
61 : #endif
62 : c = info[2];
63 : #else /* AESNI using asm */
64 2 : asm ("movl $1, %%eax \n\t"
65 : "cpuid \n\t"
66 : : "=c" (c)
67 : :
68 : : "eax", "ebx", "edx");
69 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
70 2 : done = 1;
71 : }
72 :
73 5210 : return (c & what) != 0;
74 : }
75 : #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
76 :
77 : #if MBEDTLS_AESNI_HAVE_CODE == 2
78 :
79 : /*
80 : * AES-NI AES-ECB block en(de)cryption
81 : */
82 : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
83 : int mode,
84 : const unsigned char input[16],
85 : unsigned char output[16])
86 : {
87 : const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
88 : unsigned nr = ctx->nr; // Number of remaining rounds
89 :
90 : // Load round key 0
91 : __m128i state;
92 : memcpy(&state, input, 16);
93 : state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
94 : ++rk;
95 : --nr;
96 :
97 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
98 : if (mode == MBEDTLS_AES_DECRYPT) {
99 : while (nr != 0) {
100 : state = _mm_aesdec_si128(state, *rk);
101 : ++rk;
102 : --nr;
103 : }
104 : state = _mm_aesdeclast_si128(state, *rk);
105 : } else
106 : #else
107 : (void) mode;
108 : #endif
109 : {
110 : while (nr != 0) {
111 : state = _mm_aesenc_si128(state, *rk);
112 : ++rk;
113 : --nr;
114 : }
115 : state = _mm_aesenclast_si128(state, *rk);
116 : }
117 :
118 : memcpy(output, &state, 16);
119 : return 0;
120 : }
121 :
122 : /*
123 : * GCM multiplication: c = a times b in GF(2^128)
124 : * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
125 : */
126 :
127 : static void gcm_clmul(const __m128i aa, const __m128i bb,
128 : __m128i *cc, __m128i *dd)
129 : {
130 : /*
131 : * Caryless multiplication dd:cc = aa * bb
132 : * using [CLMUL-WP] algorithm 1 (p. 12).
133 : */
134 : *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
135 : *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
136 : __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
137 : __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
138 : ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
139 : ee = ff; // e1+f1:e0+f0
140 : ff = _mm_srli_si128(ff, 8); // 0:e1+f1
141 : ee = _mm_slli_si128(ee, 8); // e0+f0:0
142 : *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
143 : *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
144 : }
145 :
146 : static void gcm_shift(__m128i *cc, __m128i *dd)
147 : {
148 : /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
149 : * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
150 : // // *cc = r1:r0
151 : // // *dd = r3:r2
152 : __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
153 : __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
154 : __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
155 : __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
156 : __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
157 : cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
158 : dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
159 :
160 : *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
161 : *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
162 : }
163 :
164 : static __m128i gcm_reduce(__m128i xx)
165 : {
166 : // // xx = x1:x0
167 : /* [CLMUL-WP] Algorithm 5 Step 2 */
168 : __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
169 : __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
170 : __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
171 : __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
172 : return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
173 : }
174 :
175 : static __m128i gcm_mix(__m128i dx)
176 : {
177 : /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
178 : __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
179 : __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
180 : __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
181 :
182 : // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
183 : // bits carried from d. Now get those bits back in.
184 : __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
185 : __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
186 : __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
187 : __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
188 :
189 : return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
190 : }
191 :
192 : void mbedtls_aesni_gcm_mult(unsigned char c[16],
193 : const unsigned char a[16],
194 : const unsigned char b[16])
195 : {
196 : __m128i aa = { 0 }, bb = { 0 }, cc, dd;
197 :
198 : /* The inputs are in big-endian order, so byte-reverse them */
199 : for (size_t i = 0; i < 16; i++) {
200 : ((uint8_t *) &aa)[i] = a[15 - i];
201 : ((uint8_t *) &bb)[i] = b[15 - i];
202 : }
203 :
204 : gcm_clmul(aa, bb, &cc, &dd);
205 : gcm_shift(&cc, &dd);
206 : /*
207 : * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
208 : * using [CLMUL-WP] algorithm 5 (p. 18).
209 : * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
210 : */
211 : __m128i dx = gcm_reduce(cc);
212 : __m128i xh = gcm_mix(dx);
213 : cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
214 :
215 : /* Now byte-reverse the outputs */
216 : for (size_t i = 0; i < 16; i++) {
217 : c[i] = ((uint8_t *) &cc)[15 - i];
218 : }
219 :
220 : return;
221 : }
222 :
223 : /*
224 : * Compute decryption round keys from encryption round keys
225 : */
226 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
227 : void mbedtls_aesni_inverse_key(unsigned char *invkey,
228 : const unsigned char *fwdkey, int nr)
229 : {
230 : __m128i *ik = (__m128i *) invkey;
231 : const __m128i *fk = (const __m128i *) fwdkey + nr;
232 :
233 : *ik = *fk;
234 : for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
235 : *ik = _mm_aesimc_si128(*fk);
236 : }
237 : *ik = *fk;
238 : }
239 : #endif
240 :
241 : /*
242 : * Key expansion, 128-bit case
243 : */
244 : static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
245 : {
246 : /*
247 : * Finish generating the next round key.
248 : *
249 : * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
250 : * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
251 : *
252 : * On exit, xword is r7:r6:r5:r4
253 : * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
254 : * and this is returned, to be written to the round key buffer.
255 : */
256 : xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
257 : xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
258 : state = _mm_slli_si128(state, 4); // r2:r1:r0:0
259 : xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
260 : state = _mm_slli_si128(state, 4); // r1:r0:0:0
261 : xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
262 : state = _mm_slli_si128(state, 4); // r0:0:0:0
263 : state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
264 : return state;
265 : }
266 :
267 : static void aesni_setkey_enc_128(unsigned char *rk_bytes,
268 : const unsigned char *key)
269 : {
270 : __m128i *rk = (__m128i *) rk_bytes;
271 :
272 : memcpy(&rk[0], key, 16);
273 : rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
274 : rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
275 : rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
276 : rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
277 : rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
278 : rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
279 : rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
280 : rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
281 : rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
282 : rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
283 : }
284 :
285 : /*
286 : * Key expansion, 192-bit case
287 : */
288 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
289 : static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
290 : unsigned char *rk)
291 : {
292 : /*
293 : * Finish generating the next 6 quarter-keys.
294 : *
295 : * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
296 : * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
297 : * (obtained with AESKEYGENASSIST).
298 : *
299 : * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
300 : * and those are written to the round key buffer.
301 : */
302 : xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
303 : xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
304 : *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
305 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
306 : *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
307 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
308 : *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
309 : xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
310 : *state0 = xword; // = r9:r8:r7:r6
311 :
312 : xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
313 : xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
314 : *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
315 : xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
316 : *state1 = xword; // = stuff:stuff:r11:r10
317 :
318 : /* Store state0 and the low half of state1 into rk, which is conceptually
319 : * an array of 24-byte elements. Since 24 is not a multiple of 16,
320 : * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
321 : memcpy(rk, state0, 16);
322 : memcpy(rk + 16, state1, 8);
323 : }
324 :
325 : static void aesni_setkey_enc_192(unsigned char *rk,
326 : const unsigned char *key)
327 : {
328 : /* First round: use original key */
329 : memcpy(rk, key, 24);
330 : /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
331 : __m128i state0 = ((__m128i *) rk)[0];
332 : __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
333 :
334 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
335 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
336 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
337 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
338 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
339 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
340 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
341 : aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
342 : }
343 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
344 :
345 : /*
346 : * Key expansion, 256-bit case
347 : */
348 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
349 : static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
350 : __m128i *rk0, __m128i *rk1)
351 : {
352 : /*
353 : * Finish generating the next two round keys.
354 : *
355 : * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
356 : * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
357 : * (obtained with AESKEYGENASSIST).
358 : *
359 : * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
360 : */
361 : xword = _mm_shuffle_epi32(xword, 0xff);
362 : xword = _mm_xor_si128(xword, state0);
363 : state0 = _mm_slli_si128(state0, 4);
364 : xword = _mm_xor_si128(xword, state0);
365 : state0 = _mm_slli_si128(state0, 4);
366 : xword = _mm_xor_si128(xword, state0);
367 : state0 = _mm_slli_si128(state0, 4);
368 : state0 = _mm_xor_si128(state0, xword);
369 : *rk0 = state0;
370 :
371 : /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
372 : * and proceed to generate next round key from there */
373 : xword = _mm_aeskeygenassist_si128(state0, 0x00);
374 : xword = _mm_shuffle_epi32(xword, 0xaa);
375 : xword = _mm_xor_si128(xword, state1);
376 : state1 = _mm_slli_si128(state1, 4);
377 : xword = _mm_xor_si128(xword, state1);
378 : state1 = _mm_slli_si128(state1, 4);
379 : xword = _mm_xor_si128(xword, state1);
380 : state1 = _mm_slli_si128(state1, 4);
381 : state1 = _mm_xor_si128(state1, xword);
382 : *rk1 = state1;
383 : }
384 :
385 : static void aesni_setkey_enc_256(unsigned char *rk_bytes,
386 : const unsigned char *key)
387 : {
388 : __m128i *rk = (__m128i *) rk_bytes;
389 :
390 : memcpy(&rk[0], key, 16);
391 : memcpy(&rk[1], key + 16, 16);
392 :
393 : /*
394 : * Main "loop" - Generating one more key than necessary,
395 : * see definition of mbedtls_aes_context.buf
396 : */
397 : aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
398 : aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
399 : aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
400 : aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
401 : aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
402 : aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
403 : aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
404 : }
405 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
406 :
407 : #if defined(MBEDTLS_POP_TARGET_PRAGMA)
408 : #if defined(__clang__)
409 : #pragma clang attribute pop
410 : #elif defined(__GNUC__)
411 : #pragma GCC pop_options
412 : #endif
413 : #undef MBEDTLS_POP_TARGET_PRAGMA
414 : #endif
415 :
416 : #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
417 :
418 : #if defined(__has_feature)
419 : #if __has_feature(memory_sanitizer)
420 : #warning \
421 : "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
422 : #endif
423 : #endif
424 :
425 : /*
426 : * Binutils needs to be at least 2.19 to support AES-NI instructions.
427 : * Unfortunately, a lot of users have a lower version now (2014-04).
428 : * Emit bytecode directly in order to support "old" version of gas.
429 : *
430 : * Opcodes from the Intel architecture reference manual, vol. 3.
431 : * We always use registers, so we don't need prefixes for memory operands.
432 : * Operand macros are in gas order (src, dst) as opposed to Intel order
433 : * (dst, src) in order to blend better into the surrounding assembly code.
434 : */
435 : #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
436 : #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
437 : #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
438 : #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
439 : #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
440 : #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
441 : #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
442 :
443 : #define xmm0_xmm0 "0xC0"
444 : #define xmm0_xmm1 "0xC8"
445 : #define xmm0_xmm2 "0xD0"
446 : #define xmm0_xmm3 "0xD8"
447 : #define xmm0_xmm4 "0xE0"
448 : #define xmm1_xmm0 "0xC1"
449 : #define xmm1_xmm2 "0xD1"
450 :
451 : /*
452 : * AES-NI AES-ECB block en(de)cryption
453 : */
454 3620 : int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
455 : int mode,
456 : const unsigned char input[16],
457 : unsigned char output[16])
458 : {
459 3620 : asm ("movdqu (%3), %%xmm0 \n\t" // load input
460 : "movdqu (%1), %%xmm1 \n\t" // load round key 0
461 : "pxor %%xmm1, %%xmm0 \n\t" // round 0
462 : "add $16, %1 \n\t" // point to next round key
463 : "subl $1, %0 \n\t" // normal rounds = nr - 1
464 : "test %2, %2 \n\t" // mode?
465 : "jz 2f \n\t" // 0 = decrypt
466 :
467 : "1: \n\t" // encryption loop
468 : "movdqu (%1), %%xmm1 \n\t" // load round key
469 : AESENC(xmm1_xmm0) // do round
470 : "add $16, %1 \n\t" // point to next round key
471 : "subl $1, %0 \n\t" // loop
472 : "jnz 1b \n\t"
473 : "movdqu (%1), %%xmm1 \n\t" // load round key
474 : AESENCLAST(xmm1_xmm0) // last round
475 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
476 : "jmp 3f \n\t"
477 :
478 : "2: \n\t" // decryption loop
479 : "movdqu (%1), %%xmm1 \n\t"
480 : AESDEC(xmm1_xmm0) // do round
481 : "add $16, %1 \n\t"
482 : "subl $1, %0 \n\t"
483 : "jnz 2b \n\t"
484 : "movdqu (%1), %%xmm1 \n\t" // load round key
485 : AESDECLAST(xmm1_xmm0) // last round
486 : #endif
487 :
488 : "3: \n\t"
489 : "movdqu %%xmm0, (%4) \n\t" // export output
490 : :
491 3620 : : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
492 : : "memory", "cc", "xmm0", "xmm1");
493 :
494 :
495 3620 : return 0;
496 : }
497 :
498 : /*
499 : * GCM multiplication: c = a times b in GF(2^128)
500 : * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
501 : */
502 3624 : void mbedtls_aesni_gcm_mult(unsigned char c[16],
503 : const unsigned char a[16],
504 : const unsigned char b[16])
505 : {
506 : unsigned char aa[16], bb[16], cc[16];
507 : size_t i;
508 :
509 : /* The inputs are in big-endian order, so byte-reverse them */
510 61608 : for (i = 0; i < 16; i++) {
511 57984 : aa[i] = a[15 - i];
512 57984 : bb[i] = b[15 - i];
513 : }
514 :
515 3624 : asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
516 : "movdqu (%1), %%xmm1 \n\t" // b1:b0
517 :
518 : /*
519 : * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
520 : * using [CLMUL-WP] algorithm 1 (p. 12).
521 : */
522 : "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
523 : "movdqa %%xmm1, %%xmm3 \n\t" // same
524 : "movdqa %%xmm1, %%xmm4 \n\t" // same
525 : PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
526 : PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
527 : PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
528 : PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
529 : "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
530 : "movdqa %%xmm4, %%xmm3 \n\t" // same
531 : "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
532 : "pslldq $8, %%xmm3 \n\t" // e0+f0:0
533 : "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
534 : "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
535 :
536 : /*
537 : * Now shift the result one bit to the left,
538 : * taking advantage of [CLMUL-WP] eq 27 (p. 18)
539 : */
540 : "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
541 : "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
542 : "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
543 : "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
544 : "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
545 : "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
546 : "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
547 : "pslldq $8, %%xmm3 \n\t" // r0>>63:0
548 : "pslldq $8, %%xmm4 \n\t" // r2>>63:0
549 : "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
550 : "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
551 : "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
552 : "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
553 :
554 : /*
555 : * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
556 : * using [CLMUL-WP] algorithm 5 (p. 18).
557 : * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
558 : */
559 : /* Step 2 (1) */
560 : "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
561 : "movdqa %%xmm1, %%xmm4 \n\t" // same
562 : "movdqa %%xmm1, %%xmm5 \n\t" // same
563 : "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
564 : "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
565 : "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
566 :
567 : /* Step 2 (2) */
568 : "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
569 : "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
570 : "pslldq $8, %%xmm3 \n\t" // a+b+c:0
571 : "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
572 :
573 : /* Steps 3 and 4 */
574 : "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
575 : "movdqa %%xmm1,%%xmm4 \n\t" // same
576 : "movdqa %%xmm1,%%xmm5 \n\t" // same
577 : "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
578 : "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
579 : "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
580 : "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
581 : "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
582 : // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
583 : // bits carried from d. Now get those\t bits back in.
584 : "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
585 : "movdqa %%xmm1,%%xmm4 \n\t" // same
586 : "movdqa %%xmm1,%%xmm5 \n\t" // same
587 : "psllq $63, %%xmm3 \n\t" // d<<63:stuff
588 : "psllq $62, %%xmm4 \n\t" // d<<62:stuff
589 : "psllq $57, %%xmm5 \n\t" // d<<57:stuff
590 : "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
591 : "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
592 : "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
593 : "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
594 : "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
595 : "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
596 :
597 : "movdqu %%xmm0, (%2) \n\t" // done
598 : :
599 : : "r" (aa), "r" (bb), "r" (cc)
600 : : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
601 :
602 : /* Now byte-reverse the outputs */
603 61608 : for (i = 0; i < 16; i++) {
604 57984 : c[i] = cc[15 - i];
605 : }
606 :
607 3624 : return;
608 : }
609 :
610 : /*
611 : * Compute decryption round keys from encryption round keys
612 : */
613 : #if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
614 0 : void mbedtls_aesni_inverse_key(unsigned char *invkey,
615 : const unsigned char *fwdkey, int nr)
616 : {
617 0 : unsigned char *ik = invkey;
618 0 : const unsigned char *fk = fwdkey + 16 * nr;
619 :
620 0 : memcpy(ik, fk, 16);
621 :
622 0 : for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
623 0 : asm ("movdqu (%0), %%xmm0 \n\t"
624 : AESIMC(xmm0_xmm0)
625 : "movdqu %%xmm0, (%1) \n\t"
626 : :
627 : : "r" (fk), "r" (ik)
628 : : "memory", "xmm0");
629 : }
630 :
631 0 : memcpy(ik, fk, 16);
632 0 : }
633 : #endif
634 :
635 : /*
636 : * Key expansion, 128-bit case
637 : */
638 2 : static void aesni_setkey_enc_128(unsigned char *rk,
639 : const unsigned char *key)
640 : {
641 2 : asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
642 : "movdqu %%xmm0, (%0) \n\t" // as round key 0
643 : "jmp 2f \n\t" // skip auxiliary routine
644 :
645 : /*
646 : * Finish generating the next round key.
647 : *
648 : * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
649 : * with X = rot( sub( r3 ) ) ^ RCON.
650 : *
651 : * On exit, xmm0 is r7:r6:r5:r4
652 : * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
653 : * and those are written to the round key buffer.
654 : */
655 : "1: \n\t"
656 : "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
657 : "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
658 : "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
659 : "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
660 : "pslldq $4, %%xmm0 \n\t" // etc
661 : "pxor %%xmm0, %%xmm1 \n\t"
662 : "pslldq $4, %%xmm0 \n\t"
663 : "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
664 : "add $16, %0 \n\t" // point to next round key
665 : "movdqu %%xmm0, (%0) \n\t" // write it
666 : "ret \n\t"
667 :
668 : /* Main "loop" */
669 : "2: \n\t"
670 : AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
671 : AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
672 : AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
673 : AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
674 : AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
675 : AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
676 : AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
677 : AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
678 : AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
679 : AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
680 : :
681 : : "r" (rk), "r" (key)
682 : : "memory", "cc", "0");
683 2 : }
684 :
685 : /*
686 : * Key expansion, 192-bit case
687 : */
688 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
689 0 : static void aesni_setkey_enc_192(unsigned char *rk,
690 : const unsigned char *key)
691 : {
692 0 : asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
693 : "movdqu %%xmm0, (%0) \n\t"
694 : "add $16, %0 \n\t"
695 : "movq 16(%1), %%xmm1 \n\t"
696 : "movq %%xmm1, (%0) \n\t"
697 : "add $8, %0 \n\t"
698 : "jmp 2f \n\t" // skip auxiliary routine
699 :
700 : /*
701 : * Finish generating the next 6 quarter-keys.
702 : *
703 : * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
704 : * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
705 : *
706 : * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
707 : * and those are written to the round key buffer.
708 : */
709 : "1: \n\t"
710 : "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
711 : "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
712 : "pslldq $4, %%xmm0 \n\t" // etc
713 : "pxor %%xmm0, %%xmm2 \n\t"
714 : "pslldq $4, %%xmm0 \n\t"
715 : "pxor %%xmm0, %%xmm2 \n\t"
716 : "pslldq $4, %%xmm0 \n\t"
717 : "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
718 : "movdqu %%xmm0, (%0) \n\t"
719 : "add $16, %0 \n\t"
720 : "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
721 : "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
722 : "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
723 : "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
724 : "movq %%xmm1, (%0) \n\t"
725 : "add $8, %0 \n\t"
726 : "ret \n\t"
727 :
728 : "2: \n\t"
729 : AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
730 : AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
731 : AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
732 : AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
733 : AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
734 : AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
735 : AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
736 : AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
737 :
738 : :
739 : : "r" (rk), "r" (key)
740 : : "memory", "cc", "0");
741 0 : }
742 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
743 :
744 : /*
745 : * Key expansion, 256-bit case
746 : */
747 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
748 793 : static void aesni_setkey_enc_256(unsigned char *rk,
749 : const unsigned char *key)
750 : {
751 793 : asm ("movdqu (%1), %%xmm0 \n\t"
752 : "movdqu %%xmm0, (%0) \n\t"
753 : "add $16, %0 \n\t"
754 : "movdqu 16(%1), %%xmm1 \n\t"
755 : "movdqu %%xmm1, (%0) \n\t"
756 : "jmp 2f \n\t" // skip auxiliary routine
757 :
758 : /*
759 : * Finish generating the next two round keys.
760 : *
761 : * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
762 : * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
763 : *
764 : * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
765 : * and those have been written to the output buffer.
766 : */
767 : "1: \n\t"
768 : "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
769 : "pxor %%xmm0, %%xmm2 \n\t"
770 : "pslldq $4, %%xmm0 \n\t"
771 : "pxor %%xmm0, %%xmm2 \n\t"
772 : "pslldq $4, %%xmm0 \n\t"
773 : "pxor %%xmm0, %%xmm2 \n\t"
774 : "pslldq $4, %%xmm0 \n\t"
775 : "pxor %%xmm2, %%xmm0 \n\t"
776 : "add $16, %0 \n\t"
777 : "movdqu %%xmm0, (%0) \n\t"
778 :
779 : /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
780 : * and proceed to generate next round key from there */
781 : AESKEYGENA(xmm0_xmm2, "0x00")
782 : "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
783 : "pxor %%xmm1, %%xmm2 \n\t"
784 : "pslldq $4, %%xmm1 \n\t"
785 : "pxor %%xmm1, %%xmm2 \n\t"
786 : "pslldq $4, %%xmm1 \n\t"
787 : "pxor %%xmm1, %%xmm2 \n\t"
788 : "pslldq $4, %%xmm1 \n\t"
789 : "pxor %%xmm2, %%xmm1 \n\t"
790 : "add $16, %0 \n\t"
791 : "movdqu %%xmm1, (%0) \n\t"
792 : "ret \n\t"
793 :
794 : /*
795 : * Main "loop" - Generating one more key than necessary,
796 : * see definition of mbedtls_aes_context.buf
797 : */
798 : "2: \n\t"
799 : AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
800 : AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
801 : AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
802 : AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
803 : AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
804 : AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
805 : AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
806 : :
807 : : "r" (rk), "r" (key)
808 : : "memory", "cc", "0");
809 793 : }
810 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
811 :
812 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
813 :
814 : /*
815 : * Key expansion, wrapper
816 : */
817 795 : int mbedtls_aesni_setkey_enc(unsigned char *rk,
818 : const unsigned char *key,
819 : size_t bits)
820 : {
821 795 : switch (bits) {
822 2 : case 128: aesni_setkey_enc_128(rk, key); break;
823 : #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
824 0 : case 192: aesni_setkey_enc_192(rk, key); break;
825 793 : case 256: aesni_setkey_enc_256(rk, key); break;
826 : #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
827 0 : default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
828 : }
829 :
830 795 : return 0;
831 : }
832 :
833 : #endif /* MBEDTLS_AESNI_HAVE_CODE */
834 :
835 : #endif /* MBEDTLS_AESNI_C */
|